A344087 Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically.
1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 3, 2, 5, 3, 2, 1, 5, 1, 4, 2, 6, 4, 2, 1, 6, 1, 5, 2, 4, 3, 7, 5, 2, 1, 4, 3, 1, 7, 1, 6, 2, 5, 3, 8, 6, 2, 1, 5, 3, 1, 8, 1, 4, 3, 2, 7, 2, 6, 3, 5, 4, 9, 4, 3, 2, 1, 7, 2, 1, 6, 3, 1, 5, 4, 1, 9, 1, 5, 3, 2, 8, 2, 7, 3, 6, 4, 10
Offset: 0
Examples
Tetrangle begins: 0: () 1: (1) 2: (2) 3: (21)(3) 4: (31)(4) 5: (41)(32)(5) 6: (321)(51)(42)(6) 7: (421)(61)(52)(43)(7) 8: (521)(431)(71)(62)(53)(8) 9: (621)(531)(81)(432)(72)(63)(54)(9)
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of colex gives A118457.
The not necessarily strict version is A211992.
Taking lex instead of colex gives A344086.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080576, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A246688, A272020, A299755, A296774, A304038, A319247, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344088, A344089, A344091.
Programs
-
Mathematica
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
Comments