A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.
1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0
Examples
Tetrangle begins: 0: () 1: (1) 2: (2) 3: (3)(12) 4: (4)(13) 5: (5)(23)(14) 6: (6)(24)(15)(123) 7: (7)(34)(25)(16)(124) 8: (8)(35)(26)(17)(134)(125) 9: (9)(45)(36)(27)(18)(234)(135)(126)
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Positions of first appearances are A015724 plus one.
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A193073, A211992, A228100, A228351, A228531, A246688, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A339351, A344085, A344086, A344087, A344088, A344089.
Programs
-
Mathematica
Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]
Comments