cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344090 Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, then lexicographically.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 3, 1, 5, 3, 2, 4, 1, 6, 4, 2, 5, 1, 3, 2, 1, 7, 4, 3, 5, 2, 6, 1, 4, 2, 1, 8, 5, 3, 6, 2, 7, 1, 4, 3, 1, 5, 2, 1, 9, 5, 4, 6, 3, 7, 2, 8, 1, 4, 3, 2, 5, 3, 1, 6, 2, 1, 10, 6, 4, 7, 3, 8, 2, 9, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 7, 2, 1, 4, 3, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(21)
  4: (4)(31)
  5: (5)(32)(41)
  6: (6)(42)(51)(321)
  7: (7)(43)(52)(61)(421)
  8: (8)(53)(62)(71)(431)(521)
  9: (9)(54)(63)(72)(81)(432)(531)(621)
		

Crossrefs

Starting with reversed partitions gives A026793.
The version for compositions is A124734.
Showing partitions as Heinz numbers gives A246867.
The non-strict version is A334301 (reversed: A036036).
Ignoring length gives A344086 (reversed: A246688).
Same as A344089 with partitions reversed.
The version for revlex instead of lex is A344092.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A296150 reads off partitions by Heinz number.

Programs

  • Mathematica
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}]