cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338697 a(n) = [x^n] Product_{k>=1} 1 / (1 - n^(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 13, 101, 931, 12391, 178809, 3331721, 66288142, 1589753211, 40104031166, 1183380156013, 36187564837217, 1262524447510383, 45533370885563716, 1834219414937219601, 76016894083755947753, 3479900167920331954531, 162982921698852088968886, 8341707623665223127224821
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Join[{1}, Table[Sum[Length[IntegerPartitions[n, {k}]] n^(n - k), {k, 0, n}], {n, 1, 20}]]
    Join[{1}, Table[SeriesCoefficient[x + (n-1)/(n*QPochhammer[1/n, n*x]), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)

Formula

a(n) = Sum_{k=0..n} p(n,k) * n^(n-k), where p(n,k) is the number of partitions of n into k parts.
a(n) ~ c * n^(n-1), where c = BesselI(1,2) = A096789 = 1.590636854637329... - Vaclav Kotesovec, May 09 2021

A344094 a(n) = [x^n] Product_{k>=1} (1 + n^(k+1)*x^k).

Original entry on oeis.org

1, 1, 8, 324, 5120, 171875, 13716864, 409300871, 20535312384, 976299632280, 144100000000000, 6251749326428232, 484144254340300800, 31585633366079696358, 2452531026468909711360, 483966896057281494140625, 31314307295813796764844032, 3176091371161687418319418614
Offset: 0

Views

Author

Vaclav Kotesovec, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+n^(k+1)*x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Join[{1}, Table[SeriesCoefficient[QPochhammer[-n, n*x]/(n+1), {x, 0, n}], {n, 1, 20}]]

A346454 a(n) = [x^n] Product_{k>=1} (1 + n^(k+1)*x^k) / (1 - n^(k+1)*x^k).

Original entry on oeis.org

1, 2, 48, 2592, 223232, 31125000, 6446926080, 1892514990688, 749710432272384, 385769883231774522, 249932498200000000000, 198950665850610546765024, 190770235699567102280073216, 216806274426828873068796386600, 288094786833316639387122903613440
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n^(k + 1)*x^k)/(1 - n^(k + 1)*x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[2*x + ((1 - n)*QPochhammer[-n, n*x, 1 + n]) / ((1 + n)*QPochhammer[n, n*x, 1 + n]), {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2 * n^(2*n).
Showing 1-3 of 3 results.