cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343849 a(n) = Sum_{k = 0..n} n! * LaguerreL(n, -k).

Original entry on oeis.org

1, 3, 23, 294, 5194, 116620, 3175717, 101696700, 3745365444, 155975005998, 7247927859875, 371803988506742, 20870023274690966, 1272424816703533792, 83736949788656865729, 5916106654032037435800, 446636583718649775483144, 35882981062654529341219962, 3056767877633271802374850239
Offset: 0

Views

Author

Peter Luschny, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[n! LaguerreL[n, -k], {k, 0, n}];
    Table[a[n], {n, 0, 18}]
  • PARI
    a(n) = n!*sum(m=0, n, sum(j=0, n, binomial(n, j) * m^j / j!))
    for(n=0, 18, print(a(n)))

Formula

a(n) = (-1)^n * Sum_{k=0..n} KummerU(-n, 1, -k).
a(n) = n! * Sum_{m=0..n} Sum_{j=0..n} binomial(n, j) * m^j / j!.
a(n) ~ exp(n/phi - n) * phi^(2*n+1) * n^n / (5^(1/4) * (1 - exp(-1/phi))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 09 2021

A344106 a(n) = n! * LaguerreL(n, -n+1).

Original entry on oeis.org

1, 1, 7, 86, 1473, 32344, 866695, 27422352, 1000578817, 41361536384, 1910451937671, 97512721964800, 5450486787062977, 331112639931669504, 21722219855305516807, 1530517712811373819904, 115269154497700063898625, 9241045907270523509112832, 785719407951447904088069383
Offset: 0

Views

Author

Vaclav Kotesovec, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*LaguerreL[n, -n+1], {n, 0, 20}]
  • PARI
    a(n) = n!*subst(pollaguerre(n), x, 1-n); \\ Michel Marcus, May 09 2021

Formula

a(n) ~ exp((n-1)/phi - n) * phi^(2*n+1) * n^n / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
a(n) = Sum_{k=0..n} binomial(n, k)^2*(n - k)!*(n - 1)^k. - Peter Luschny, Dec 25 2021
Showing 1-2 of 2 results.