A344124 Decimal expansion of Sum_{i > 0} 1/A001481(i)^3.
1, 1, 5, 4, 5, 3, 8, 3, 3, 0, 4, 7, 6, 3, 8, 8, 9, 4, 3, 9, 2, 2, 1, 0, 6, 5, 9, 4, 5, 5, 5, 5, 1, 6, 8, 2, 9, 8, 9, 8, 7, 7, 5, 1, 9, 7, 4, 4, 8, 7
Offset: 1
Examples
1.1545383304763889439221065945555168298987751974487...
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Formula
Equals Sum_{i > 0} 1/A001481(i)^3.
Equals Product_{i > 0} 1/(1-A055025(i)^-3).
Equals 1/(1-prime(1)^(-3)) * Product_{i>1 and prime(i) == 1 (mod 4)} 1/(1-prime(i)^(-3)) * Product_{i>1 and prime(i) == 3 (mod 4)} 1/(1-prime(i)^(-6)), where prime(n) = A000040(n).
Equals zeta_{2,0} (3) * zeta_{4,1} (3) * zeta_{4,3} (6), where zeta_{2,0} (s) = 2^s/(2^s - 1).
Comments