A344123 Decimal expansion of Sum_{i > 0} 1/A001481(i)^2.
1, 4, 2, 6, 5, 5, 6, 0, 6, 3, 5, 1, 2, 5, 9, 2, 8, 7, 8, 6, 9, 6, 8, 0, 9, 3, 1, 6, 1, 5, 5, 0, 8, 1, 6, 3, 6, 1, 2, 7, 6, 6, 9, 3, 6, 3, 6, 7, 7, 0, 3, 9, 0, 2, 8, 8, 7, 9, 9, 2, 2, 3, 0, 4, 4, 1, 2, 9, 6, 0, 4, 5, 2, 8, 6, 1, 5, 1, 9, 0, 1, 9, 1, 4, 6, 7
Offset: 1
Examples
1.4265560635125928786968093161550816361276693636770...
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Formula
Equals Sum_{i > 0} 1/A001481(i)^2.
Equals Product_{i > 0} 1/(1-A055025(i)^-2).
Equals 1/(1-prime(1)^(-2)) * Product_{i>1 and prime(i) == 1 (mod 4)} 1/(1-prime(i)^(-2)) * Product_{i>1 and prime(i) == 3 (mod 4)} 1/(1-prime(i)^(-4)), where prime(n) = A000040(n).
Equals zeta_{2,0} (2) * zeta_{4,1} (2) * zeta_{4,3} (4), where zeta_{4,1} (2) = A175647 and zeta_{2,0} (s) = 2^s/(2^s - 1).
Comments