A344179 Jordan-Polya numbers (A001013) not in A344181.
72, 216, 432, 1296, 1728, 2592, 5184, 7776, 10368, 14400, 15552, 28800, 31104, 41472, 46656, 51840, 57600, 62208, 93312, 115200, 120960, 124416, 155520, 186624, 230400, 248832, 279936, 311040, 373248, 460800, 559872, 604800, 746496, 921600, 933120, 995328, 1088640, 1119744, 1209600, 1244160, 1492992, 1679616, 1728000
Offset: 1
Keywords
Examples
72 = 2*6*6 = 2! * 3! * 3! is present in A001013, and as it is not present in A344181 (because when it is divided by its largest factorial divisor 24, we get 72/24 = 3, an odd number that is not a factorial itself), it is therefore present in this sequence.
Links
Programs
-
Mathematica
fct = Array[#! &, 10]; prev = {}; jp = fct; While[jp != prev, prev = jp; jp = Select[Union @@ Outer[Times, jp, fct], # <= fct[[-1]] &]]; fctdiv[n_] := Module[{m = 1, k = 1}, While[Divisible[n, m], k++; m *= k]; m /= k; n/m]; Select[jp, FixedPoint[fctdiv, #] != 1 &] (* Amiram Eldar, May 22 2021 *)
-
PARI
search_up_to = 2^22; A076934(n) = for(k=2, oo , if(n%k, return(n), n /= k)); A093411(n) = if(!n,n, if(n%2, n, A093411(A076934(n)))); A001013list(lim, mx=lim)=if(lim<2, return([1])); my(v=[1], t=1); for(n=2, mx, t*=n; if(t>lim, break); v=concat(v, t*A001013list(lim\t, t))); Set(v) \\ From A001013 v001013 = A001013list(search_up_to); A001013(n) = v001013[n]; isA344179(n) = if(v001013[#v001013]
A093411(n))&&vecsearch(v001013,n))); for(n=1,search_up_to,if(isA344179(n),print1(n,", ")));
Comments