A344196 Numbers that are the sum of six fifth powers in ten or more ways.
55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 180336745600, 182844944832, 184948721056, 187873845500
Offset: 1
Keywords
Examples
89999127392 = 4^5 + 36^5 + 39^5 + 40^5 + 90^5 + 153^5 = 8^5 + 21^5 + 90^5 + 109^5 + 119^5 + 135^5 = 8^5 + 28^5 + 98^5 + 102^5 + 104^5 + 142^5 = 10^5 + 38^5 + 74^5 + 102^5 + 118^5 + 140^5 = 13^5 + 51^5 + 64^5 + 98^5 + 112^5 + 144^5 = 18^5 + 44^5 + 66^5 + 98^5 + 112^5 + 144^5 = 18^5 + 52^5 + 72^5 + 78^5 + 118^5 + 144^5 = 28^5 + 60^5 + 63^5 + 65^5 + 124^5 + 142^5 = 36^5 + 53^5 + 62^5 + 63^5 + 129^5 + 139^5 = 39^5 + 41^5 + 64^5 + 91^5 + 98^5 + 149^5 so 89999127392 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..61
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 10]) for x in range(len(rets)): print(rets[x])