cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344201 Number of cyclic subgroups of the group (C_n)^n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 4, 14, 136, 782, 23360, 137258, 4210816, 64576643, 2500000768, 28531167062, 2229573502976, 25239592216022, 1852001137606656, 54736740117685528, 2305878194659557376, 51702516367896047762, 6557734713069408616448, 109912203092239643840222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := DivisorSum[n, MoebiusMu[n/#] * #^k &] / EulerPhi[n]; a[n_] := DivisorSum[n, b[#, n] &]; Array[a, 20] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    b(n, k) = sumdiv(n, d, moebius(n/d)*d^k)/eulerphi(n);
    a(n) = sumdiv(n, d, b(d, n));

Formula

a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} phi(x_1)*phi(x_2)* ... *phi(x_n)/phi(lcm(x_1, x_2, ... , x_n)).
a(n) = Sum_{d|n} b(d, n), where b(n, k) = ( Sum_{d|n} mu(n/d) * d^k )/phi(n).
If p is prime, a(p) = 1 + (p^p - 1)/(p - 1).