A263950 Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.
1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
Offset: 1
Examples
There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1. Array begins: k=1 k=2 k=3 k=4 k=5 k=6 n=1 1 1 1 1 1 1 n=2 1 3 7 15 31 63 n=3 1 4 13 40 121 364 n=4 1 6 28 120 496 2016 n=5 1 6 31 156 781 3906 n=6 1 12 91 600 3751 22932
References
- Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.
Links
- Álvar Ibeas, First 100 antidiagonals, flattened
- Jin Ho Kwak, Jang-Ho Chun, and Jaeun Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11(2), 1998, pp. 273-285. [Page 277]
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Examples 2 and 3]
Crossrefs
Rows (1-11): A000012, A000225, A003462, A006516, A003463, A160869, A023000, A016152, A016142(n-1), A046915(n-1), A016123(n-1).
Columns (1-17): A000012, A001615, A160889, A160891, A160893, A160895, A160897, A160908, A160953, A160957, A160960, A160972, A161010, A161025, A161139, A161167, A161213.
Main diagonal gives A344210.
Programs
-
Mathematica
f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)
Formula
T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^k). - Ridouane Oudra, Apr 03 2025
Comments