A344219 Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.
1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.
Programs
-
Mathematica
f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
-
PARI
a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
-
PARI
a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n); a(n) = sumdiv(n, d, a160893(d));
Formula
a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)
Comments