cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344228 a(n) = binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1).

Original entry on oeis.org

3, 17, 84, 393, 1778, 7866, 34254, 147433, 628914, 2663934, 11219728, 47033322, 196393044, 817338580, 3391858530, 14040986985, 57998364690, 239112756630, 984126777480, 4044255577230, 16597080112860, 68027923573740
Offset: 1

Views

Author

F. Chapoton, May 12 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in the Cambrian lattices of type B_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 34254 for n = 7.

Examples

			For B_2, among the 18 intervals in the hexagon-shaped lattice, only one is not linear.
		

Crossrefs

Cf. A344136 for the type A, A344191 for a similar sequence.

Programs

  • Maple
    a := n -> 3*(2*n^3 + n - 1)*2^(2*n - 2)*binomial(n - 3/2, -1/2)/((n + 1)*n):
    seq(a(n), n = 1..22);  # Peter Luschny, May 12 2021
  • Mathematica
    Array[3 (2 #^3 + # - 1)*2^(2 # - 2)*Binomial[# - 3/2, -1/2]/(# (# + 1)) &, 22] (* Michael De Vlieger, Jan 17 2024 *)
  • Sage
    def a(n):
        return binomial(2*n,n)*(2*n+1)/2+n*binomial(2*n-2,n)+(n-1)*binomial(2*n-2,n+1)

Formula

From Peter Luschny, May 12 2021: (Start)
a(n) = 3*(2*n^3 + n - 1)*2^(2*n - 2)*binomial(n - 3/2, -1/2)/((n + 1)*n).
a(n) = [x^n] (15*x - 24*x^2 + 8*x^3 - 2 + (1 - 4*x)^(3/2)*(2 - 3*x))/(2*(1 - 4*x)^(3/2)*x).
a(n) ~ 4^(n-2)*(24*n - 15)/sqrt(Pi*n). (End)
a(n) = a(n-1)*2*(2*n - 3)*(2*n^3 + n - 1)/((n + 1)*(2*n^3 - 6*n^2 + 7*n - 4)) for n > 1. - Chai Wah Wu, May 13 2021