cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344236 Number of n-step walks from a universal vertex to the other on the diamond graph.

Original entry on oeis.org

0, 1, 2, 5, 14, 33, 90, 221, 582, 1465, 3794, 9653, 24830, 63441, 162762, 416525, 1067574, 2733673, 7003970, 17938661, 45954542, 117709185, 301527354, 772364093, 1978473510, 5067929881, 12981823922, 33253543445, 85180839134, 218195012913, 558918369450
Offset: 0

Views

Author

M. Eren Kesim, May 12 2021

Keywords

Comments

a(n) is the number of n-step walks from vertex A to vertex C on the graph below.
B--C
| /|
|/ |
A--D

Examples

			Let A, B, C and D be the vertices of the diamond graph, where A and C are the universal vertices. Then, a(3) = 5 walks from A to C are: (A, B, A, C), (A, C, A, C), (A, C, B, C), (A, C, D, C), and (A, D, A, C).
		

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n <= 2 then n; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
  • Mathematica
    LinearRecurrence[{0, 5, 4}, {0, 1, 2}, 30]
  • PARI
    my(p=Mod('x,'x^2-'x-4)); a(n) = (vecsum(Vec(lift(p^n))) + n%2) >> 1; \\ Kevin Ryde, May 13 2021
  • Python
    def A344236_list(n):
        list = [0, 1, 2] + [0] * (n - 3)
        for i in range(3, n):
            list[i] = 5 * list[i - 2] + 4 * list[i - 3]
        return list
    print(A344236_list(31)) # M. Eren Kesim, Jul 19 2021
    

Formula

a(n) = a(n-1) + 4*a(n-2) + (-1)^n for n > 1.
a(n) = A344261(n-1) + 2*a(n-2) + 2*A344261(n-2) for n > 1.
a(n) = A344261(n) - (-1)^n.
a(n) = A006131(n) - A344261(n).
a(n) = (A006131(n) - (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n - (1/2)*(-1)^n.
G.f.: (2*x^2 + x)/(-4*x^3 - 5*x^2 + 1).
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2. - Stefano Spezia, May 13 2021