A344281 Integers m for which F (mod m) has rotational symmetry.
2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 18, 23, 25, 26, 27, 34, 37, 41, 43, 46, 47, 49, 50, 53, 54, 61, 65, 67, 73, 74, 81, 82, 83, 85, 86, 89, 94, 97, 98, 103, 106, 107, 109, 113, 122, 123, 125, 127, 129, 130, 134, 137, 146, 149, 157, 161, 162, 163, 166, 167, 169, 170
Offset: 1
Keywords
Links
- Patrick Flanagan, Marc S. Renault, and Josh Updike, Symmetries of Fibonacci Points, Mod m, Fibonacci Quart. 53 (2015), no. 1, 34-41. See p. 5.
Programs
-
PARI
\\ where pisano(n) is A001175 hasrot(m) = {if (m==1, return (0)); if (m==2, return (1)); my(j = pisano(m)/2); my(vf = [fibonacci(j), fibonacci(j+1)]); Mod(vf, m) == [0, -1];}
Comments