A344304 Number of cyclic subgroups of the group (C_n)^8, where C_n is the cyclic group of order n.
1, 256, 3281, 32896, 97657, 839936, 960801, 4210816, 7176641, 25000192, 21435889, 107931776, 67977561, 245965056, 320412617, 538984576, 435984841, 1837220096, 943531281, 3212524672, 3152388081, 5487587584, 3559590241, 13815687296, 7629472657, 17402255616
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
-
PARI
a160908(n) = sumdiv(n, d, moebius(n/d)*d^8)/eulerphi(n); a(n) = sumdiv(n, d, a160908(d));
Formula
a(n) = Sum_{x_1|n, x_2|n, ..., x_8|n} phi(x_1)*phi(x_2)* ... *phi(x_8)/phi(lcm(x_1, x_2, ..., x_8)).
If p is prime, a(p) = 1 + (p^8 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)).
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)/8) * Product_{p prime} ((1-1/p^7)/(p^2*(1-1/p))) = 0.2432888374... . (End)
Comments