cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344305 Number of cyclic subgroups of the group (C_n)^9, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 512, 9842, 131328, 488282, 5039104, 6725602, 33620224, 64576643, 250000384, 235794770, 1292530176, 883708282, 3443508224, 4805671444, 8606777600, 7411742282, 33063241216, 17927094322, 64125098496, 66193374884, 120726922240, 81870575522, 330890244608
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160953.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160953(n) = sumdiv(n, d, moebius(n/d)*d^9)/eulerphi(n);
    a(n) = sumdiv(n, d, a160953(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_9|n} phi(x_1)*phi(x_2)* ... *phi(x_9)/phi(lcm(x_1, x_2, ..., x_9)).
If p is prime, a(p) = 1 + (p^9 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)).
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} ((1-1/p^8)/(p^2*(1-1/p))) = 0.2161023934... . (End)