A344328 Number of divisors of n^5.
1, 6, 6, 11, 6, 36, 6, 16, 11, 36, 6, 66, 6, 36, 36, 21, 6, 66, 6, 66, 36, 36, 6, 96, 11, 36, 16, 66, 6, 216, 6, 26, 36, 36, 36, 121, 6, 36, 36, 96, 6, 216, 6, 66, 66, 36, 6, 126, 11, 66, 36, 66, 6, 96, 36, 96, 36, 36, 6, 396, 6, 36, 66, 31, 36, 216, 6, 66, 36, 216, 6, 176, 6, 36, 66, 66, 36
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[DivisorSigma[0, n^5], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
-
PARI
a(n) = numdiv(n^5);
-
PARI
a(n) = prod(k=1, #f=factor(n)[, 2], 5*f[k]+1);
-
PARI
a(n) = sumdiv(n, d, 5^omega(d));
-
PARI
my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 5^omega(k)*x^k/(1-x^k)))
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021
Formula
Multiplicative with a(p^e) = 5*e+1.
a(n) = Sum_{d|n} 5^omega(d).
G.f.: Sum_{k>=1} 5^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 4/p^s). - Vaclav Kotesovec, Aug 19 2021