A344332 Side s of squares of type 2 that can be tiled with squares of two different sizes so that the number of large or small squares is the same.
15, 30, 45, 60, 65, 75, 90, 105, 120, 130, 135, 150, 165, 175, 180, 195, 210, 225, 240, 255, 260, 270, 285, 300, 315, 325, 330, 345, 350, 360, 369, 375, 390, 405, 420, 435, 450, 455, 465, 480, 495, 510, 520, 525, 540, 555, 570, 585, 600, 615, 630, 645, 650, 660, 671, 675, 690, 700, 705, 715, 720, 735, 738, 750, 765, 780, 795, 810, 825, 840, 845, 855, 870, 875, 885, 900
Offset: 1
Keywords
Examples
Primitive square with s = 15: a = 3, b = 4, c = 5, s = 15, z = 9; s = 15 is the side of primitive square, with z = 9 squares of size 3 x 3 and 9 squares of size 4 x 4 Non-primitive square k*s = 2*15 = 30: a = 3, b = 4, c = 5, s = 30, z = 36, this square is obtained with 4 copies of the primitive square as below. a = 6, b = 8, c = 10, s = 30, z = 9, this square and its tiling are exactly as the primitive square with scale 2. b = 4 (or = 8) a = 3 (or = 6) ________ ________ ________ ______ ______________________________ | | | | | | | | | | | | | | | |______| | |_______ |________|________| | | | | | | | | | | | |______| | | | | | | | |________|________|________| | | | | | |______| | | | | | | | | | | | | | |_____ __|___ ____|_ ______|______| | | | | | | | | | | | | | | | |_____|______|______|______|______|______________________________| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |_________________________________|______________________________| s = 15 s = 30
References
- Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
Programs
-
PARI
pts(lim) = my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [small, middle, h])))); vecsort(Vec(v)); \\ A009000 isdp4(s) = my(k=1, x); while(((x=k^4 - (k-1)^4) <= s), if (x == s, return (1)); k++); return(0); isokp2(s) = {if (!isdp4(s), return(0)); if (s % 2, my(vp = pts(s)); for (i=1, #vp, my(vpi = vp[i], a = vpi[1], b = vpi[2], c = vpi[3]); if (a*c/(c-b) == s, return(1)); ); ); } isok2(s) = {if (isokp2(s), return (1)); fordiv(s, d, if ((d>1) || (d
Michel Marcus, Jun 04 2021
Comments