cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344337 a(n) = 9^omega(n), where omega(n) is the number of distinct primes dividing n.

Original entry on oeis.org

1, 9, 9, 9, 9, 81, 9, 9, 9, 81, 9, 81, 9, 81, 81, 9, 9, 81, 9, 81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 729, 9, 9, 81, 81, 81, 81, 9, 81, 81, 81, 9, 729, 9, 81, 81, 81, 9, 81, 9, 81, 81, 81, 9, 81, 81, 81, 81, 81, 9, 729, 9, 81, 81, 9, 81, 729, 9, 81, 81, 729, 9, 81, 9, 81, 81, 81
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

k^omega(n): A034444 (k=2), A074816 (k=3), A082476 (k=5), this sequence (k=9).

Programs

  • Mathematica
    Table[9^PrimeNu[n], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = 9^omega(n);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 9);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2*numdiv(d)^3);

Formula

a(n) = A001019(A001221(n)).
Multiplicative with a(p^e) = 9.
a(n) = Sum_{d|n} mu(d)^2 * tau(d)^3.
Dirichlet g.f.: Product_{p prime} (1 + 9/(p^s-1)). - Amiram Eldar, Sep 19 2023