A344349 Number of primes along the main antidiagonal of the n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
0, 2, 3, 2, 3, 2, 6, 2, 3, 3, 6, 3, 7, 4, 7, 6, 6, 4, 10, 2, 8, 7, 9, 4, 11, 5, 10, 8, 11, 4, 17, 3, 10, 10, 12, 9, 16, 4, 10, 11, 14, 6, 21, 7, 11, 10, 16, 8, 19, 6, 19, 13, 17, 5, 25, 10, 19, 10, 16, 9, 27, 7, 16, 13, 16, 13, 31, 9, 18, 14, 27, 10, 26, 10, 20, 19, 17, 12, 30
Offset: 1
Keywords
Examples
[1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 0 2 3 2 3 ------------------------------------------------------------------------ primes {} {2,3} {3,5,7} {7,13} {5,13,17} ------------------------------------------------------------------------
Programs
-
Mathematica
Table[Sum[PrimePi[n*k - k + 1] - PrimePi[n*k - k], {k, n}], {n, 100}]
Formula
a(n) = Sum_{k=1..n} c(n*k-k+1), where c is the prime characteristic.