A344366 Integers k such that the sum of squares of digits of both k and k-1 are prime.
12, 102, 111, 120, 160, 230, 250, 380, 410, 450, 520, 560, 720, 780, 830, 870, 1002, 1011, 1020, 1060, 1100, 1101, 1110, 1370, 1640, 1680, 1910, 1950, 1970, 1990, 2030, 2050, 2340, 2670, 2920, 3080, 3170, 3240, 3420, 3460, 3550, 3570, 3710, 3840, 3860, 4010
Offset: 1
Examples
12 is in the sequence because the sum of squares of digits of 12 is 5 and that of 11 is 2, and both 5 and 2 are prime numbers.
Links
- Charles U. Lonappan, Consecutive natural numbers whose sum of squares of digits is prime, International Journal of Research in Engineering and Science (IJRES), Volume 9 Issue 1 (2021) pp. 14-16.
Crossrefs
Cf. A108662.
Programs
-
Mathematica
q[n_] := PrimeQ[Plus @@ (IntegerDigits[n]^2)]; Select[Range[2, 5000], q[#-1] && q[#] &] (* Amiram Eldar, May 19 2021 *)
-
PARI
isok(k) = isprime(norml2(digits(k-1))) && isprime(norml2(digits(k))); \\ Michel Marcus, May 24 2021
Comments