A344391 T(n, k) = binomial(n - k, k) * factorial(k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 6, 1, 5, 12, 6, 1, 6, 20, 24, 1, 7, 30, 60, 24, 1, 8, 42, 120, 120, 1, 9, 56, 210, 360, 120, 1, 10, 72, 336, 840, 720, 1, 11, 90, 504, 1680, 2520, 720, 1, 12, 110, 720, 3024, 6720, 5040, 1, 13, 132, 990, 5040, 15120, 20160, 5040
Offset: 0
Examples
[ 0] [1] [ 1] [1] [ 2] [1, 1] [ 3] [1, 2] [ 4] [1, 3, 2] [ 5] [1, 4, 6] [ 6] [1, 5, 12, 6] [ 7] [1, 6, 20, 24] [ 8] [1, 7, 30, 60, 24] [ 9] [1, 8, 42, 120, 120] [10] [1, 9, 56, 210, 360, 120] [11] [1, 10, 72, 336, 840, 720]
Programs
-
Maple
T := (n, k) -> pochhammer(n + 1 - 2*k, k): seq(print(seq(T(n, k), k=0..n/2)), n = 0..11);
-
Sage
def T(n, k): return rising_factorial(n + 1 - 2*k, k) def T(n, k): return (-1)^k*falling_factorial(2*k - n - 1, k) def T(n, k): return binomial(n - k, k) * factorial(k) print(flatten([[T(n, k) for k in (0..n//2)] for n in (0..11)]))
Formula
T(n, k) = RisingFactorial(n + 1 - 2*k, k).
T(n, k) = (-1)^k*FallingFactorial(2*k - n - 1, k).
Comments