cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344433 a(n) = Sum_{k=1..n} mu(k) * k^(n - k).

Original entry on oeis.org

1, 0, -2, -6, -17, -46, -132, -402, -1314, -4613, -17313, -68893, -288556, -1269637, -5907157, -29489299, -160431708, -955478664, -6145884133, -41584238971, -287650358748, -1984825313901, -13377544470631, -86142095523089, -512881404732949, -2634567148684612, -9205461936290915, 17544751152746927
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * k^(n-k), {k,1,n}]; Array[a, 30] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-k*x)))

Formula

G.f.: Sum_{k>=1} mu(k) * x^k / (1 - k*x).