A344469 Triangle read by rows: T(n, k) (0 <= k <= n) = [x^k] x^n * n! * [t^n] x*(1 + t)/(x*exp(-t) - t).
1, 1, 2, 2, 6, 3, 6, 24, 24, 4, 24, 120, 180, 80, 5, 120, 720, 1440, 1080, 240, 6, 720, 5040, 12600, 13440, 5670, 672, 7, 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8, 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 2; [2] 2, 6, 3; [3] 6, 24, 24, 4; [4] 24, 120, 180, 80, 5; [5] 120, 720, 1440, 1080, 240, 6; [6] 720, 5040, 12600, 13440, 5670, 672, 7; [7] 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8; [8] 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9.
Links
- Henri Cohen, Lambert W-Function Branch Identities, arXiv:2012.11698v2 [math.CV], 2020-2021.
Programs
-
Maple
gf := x*(1+t)/(x*exp(-t)-t): ser := series(gf,t,12): seq(seq(coeff(expand(x^n*n!*coeff(ser,t,n)),x,k),k=0..n),n=0..8);
-
Mathematica
(* rows[n], n[0..oo] *) n=12;r={};For[k=0,k
Detlef Meya, Jul 31 2023 *)
Comments