cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344473 Numbers of the form (q1^b1)(q2^b2)(q3^b3)(q4^b4)(q5^b5)... where q1=7, q2=13, q3=19, q4=31, q5=37, ... (A002476) and b1>=b2>=b3>=b4>=b5...

Original entry on oeis.org

1, 7, 49, 91, 343, 637, 1729, 2401, 4459, 8281, 12103, 16807, 31213, 53599, 57967, 84721, 117649, 157339, 218491, 375193, 405769, 593047, 753571, 823543, 1101373, 1529437, 1983163, 2626351, 2840383, 2989441, 4151329, 4877509, 5274997, 5764801, 7709611
Offset: 1

Views

Author

Jianing Song, May 20 2021

Keywords

Comments

A343771 is a subsequence.

Examples

			12103 is a term since 12103 = 7^2 * 13 * 19.
22477 is not a term since 22477 = 7 * 13^2 * 19, the exponents are not nonincreasing.
		

Crossrefs

Programs

  • PARI
    \\ following program for A054994
    list_A344473(lim) =
    {
        my(u = [1], v = List(), w = v, pr, t = 1);
        forprime(p = 7, ,
            if (p % 3 > 1, next);
            t *= p;
            if (t > lim,
                break);
            listput(w, t)
        );
        for (i = 1, #w,
            pr = 1;
            for (e = 1, logint(lim\ = 1, w[i]),
                pr *= w[i];
                for (j = 1, #u,
                    t = pr * u[j];
                    if (t > lim,
                        break);
                    listput(v, t)
                )
            );
            if (w[i] ^ 2 < lim, u = Set(concat(Vec(v), u)); v = List());
        );
        Set(concat(Vec(v), u));
    }
    list_A344473(100000)