A344473 Numbers of the form (q1^b1)(q2^b2)(q3^b3)(q4^b4)(q5^b5)... where q1=7, q2=13, q3=19, q4=31, q5=37, ... (A002476) and b1>=b2>=b3>=b4>=b5...
1, 7, 49, 91, 343, 637, 1729, 2401, 4459, 8281, 12103, 16807, 31213, 53599, 57967, 84721, 117649, 157339, 218491, 375193, 405769, 593047, 753571, 823543, 1101373, 1529437, 1983163, 2626351, 2840383, 2989441, 4151329, 4877509, 5274997, 5764801, 7709611
Offset: 1
Examples
12103 is a term since 12103 = 7^2 * 13 * 19. 22477 is not a term since 22477 = 7 * 13^2 * 19, the exponents are not nonincreasing.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
\\ following program for A054994 list_A344473(lim) = { my(u = [1], v = List(), w = v, pr, t = 1); forprime(p = 7, , if (p % 3 > 1, next); t *= p; if (t > lim, break); listput(w, t) ); for (i = 1, #w, pr = 1; for (e = 1, logint(lim\ = 1, w[i]), pr *= w[i]; for (j = 1, #u, t = pr * u[j]; if (t > lim, break); listput(v, t) ) ); if (w[i] ^ 2 < lim, u = Set(concat(Vec(v), u)); v = List()); ); Set(concat(Vec(v), u)); } list_A344473(100000)
Comments