A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 3, 2, 1; [4] 0, 13, 10, 3, 1; [5] 0, 75, 74, 21, 4, 1; [6] 0, 541, 730, 219, 36, 5, 1; [7] 0, 4683, 9002, 3045, 484, 55, 6, 1; [8] 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1; [9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1; . Seen as an array A(n, k) = T(n + k, n): [0] [1, 0, 0, 0, 0, 0, 0, ... A000007 [1] [1, 1, 3, 13, 75, 541, 4683, ... A000670 [2] [1, 2, 10, 74, 730, 9002, 133210, ... A004123 [3] [1, 3, 21, 219, 3045, 52923, 1103781, ... A032033 [4] [1, 4, 36, 484, 8676, 194404, 5227236, ... A094417 [5] [1, 5, 55, 905, 19855, 544505, 17919055, ... A094418 [6] [1, 6, 78, 1518, 39390, 1277646, 49729758, ... A094419 [7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ... A238464
Crossrefs
Programs
-
Maple
F := proc(n) option remember; if n = 0 then return 1 fi: expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end: seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
-
Mathematica
F[n_] := F[n] = If[n == 0, 1, Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]]; Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
-
SageMath
# Computes the triangle. @cached_function def F(n): R.
= PolynomialRing(ZZ) if n == 0: return R(1) return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n))) def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)] for n in range(10): print(Fval(n)) -
SageMath
# Computes the square array using the Akiyama-Tanigawa algorithm. def ATFubini(n, len): A = [0] * len R = [0] * len for k in range(len): R[k] = (n + 1)**k # Chancing this to R[k] = k**n generates A371761. for j in range(k, 0, -1): R[j - 1] = j * (R[j] - R[j - 1]) A[k] = R[0] return A for n in range(8): print([n], ATFubini(n, 7)) # Peter Luschny, Apr 27 2024
Formula
T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).
Comments