cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Comments

The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,      1;
[3] 0, 3,      2,       1;
[4] 0, 13,     10,      3,       1;
[5] 0, 75,     74,      21,      4,      1;
[6] 0, 541,    730,     219,     36,     5,     1;
[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;
[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0,   0,    0,     0,       0,         0, ...  A000007
[1] [1, 1,   3,   13,    75,     541,      4683, ...  A000670
[2] [1, 2,  10,   74,   730,    9002,    133210, ...  A004123
[3] [1, 3,  21,  219,  3045,   52923,   1103781, ...  A032033
[4] [1, 4,  36,  484,  8676,  194404,   5227236, ...  A094417
[5] [1, 5,  55,  905, 19855,  544505,  17919055, ...  A094418
[6] [1, 6,  78, 1518, 39390, 1277646,  49729758, ...  A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ...  A238464
		

Crossrefs

Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi:
    expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
    seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
  • Mathematica
    F[n_] := F[n] = If[n == 0, 1,
       Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
    Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
  • SageMath
    # Computes the triangle.
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
    for n in range(10): print(Fval(n))
    
  • SageMath
    # Computes the square array using the Akiyama-Tanigawa algorithm.
    def ATFubini(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = (n + 1)**k  # Chancing this to R[k] = k**n generates A371761.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATFubini(n, 7))  # Peter Luschny, Apr 27 2024

Formula

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).