cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344517 Minimum diameter of 4-regular circulant graphs of order n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7
Offset: 4

Views

Author

Andres Cicuttin, May 21 2021

Keywords

References

  • F. Boesch and Jhing-Fa Wang, Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuits and Systems, vol. 32, no. 12, pp. 1286-1291, December 1985, doi: 10.1109/TCS.1985.1085667.
  • Bevan, David et al. Large circulant graphs of fixed diameter and arbitrary degree. Ars Math. Contemp. 13 (2017): 275-291.

Crossrefs

Programs

  • Mathematica
    mindiameter[n_]:=Module[{nmax,tab,stab},
    nmax=Floor[n/2];
    tab=Flatten[#,1]&@Table[Table[{n,i,j,GraphDiameter[CirculantGraph[n,{i,j}]]},{i,1,j-1}],{j,2,nmax}];
    stab=Sort[tab,#1[[4]]<#2[[4]]&];
    stab[[1]][[4]]//Return]
    Table[mindiameter[n],{n,4,120}]
    Table[Ceiling[(Sqrt[2n-1]-1)/2],{n,4,88}] (* Stefano Spezia, May 23 2021 *)

Formula

a(n) = ceiling((sqrt(2n-1)-1)/2).