cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344522 a(n) = Sum_{1 <= i, j, k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 9, 30, 76, 141, 267, 400, 624, 885, 1249, 1590, 2208, 2689, 3411, 4248, 5248, 6081, 7485, 8530, 10248, 11889, 13687, 15228, 17988, 20053, 22569, 25242, 28588, 31053, 35463, 38284, 42540, 46581, 50893, 55362, 61824, 65857, 71247, 76884, 84388, 89349, 97881, 103342
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd([i, j, k]))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^3.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3.
a(n) ~ Pi^2 * n^3 / (6*zeta(3)). - Vaclav Kotesovec, May 23 2021

A344479 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 9, 12, 10, 1, 17, 30, 24, 15, 1, 33, 84, 76, 37, 21, 1, 65, 246, 276, 141, 61, 28, 1, 129, 732, 1060, 649, 267, 80, 36, 1, 257, 2190, 4164, 3165, 1417, 400, 112, 45, 1, 513, 6564, 16516, 15697, 8091, 2528, 624, 145, 55, 1, 1025, 19686, 65796, 78261, 47521, 17128, 4432, 885, 189, 66
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Examples

			G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
   1,  1,   1,    1,    1,     1, ...
   3,  5,   9,   17,   33,    65, ...
   6, 12,  30,   84,  246,   732, ...
  10, 24,  76,  276, 1060,  4164, ...
  15, 37, 141,  649, 3165, 15697, ...
  21, 61, 267, 1417, 8091, 47521, ...
		

Crossrefs

Columns k=1..5 give A000217, A018806, A344522, A344523, A344524.
T(n,n) gives A344525.

Programs

  • Mathematica
    T[n_, k_] := Sum[EulerPhi[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(j)*(n\j)^k);

Formula

G.f. of column k: (1/(1 - x)) * Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^k.
T(n,k) = Sum_{j=1..n} phi(j) * floor(n/j)^k.

A344524 a(n) = Sum_{1 <= i, j, k, l, m <= n} gcd(i,j,k,l,m).

Original entry on oeis.org

1, 33, 246, 1060, 3165, 8091, 17128, 33936, 60645, 103825, 164886, 259368, 381841, 557595, 784200, 1091056, 1462353, 1968261, 2554810, 3327120, 4230561, 5361463, 6644196, 8302020, 10113445, 12352041, 14873418, 17924356, 21225165, 25341375, 29670556, 34920348, 40625541, 47297365
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Comments

In general, for m > 2, Sum_{k=1..n} phi(k) * floor(n/k)^m ~ zeta(m-1) * n^m / zeta(m). - Vaclav Kotesovec, May 23 2021

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, sum(m=1, n, gcd([i, j, k, l, m]))))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^5);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^5)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^5.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^5.
a(n) ~ Pi^4 * n^5 / (90*zeta(5)). - Vaclav Kotesovec, May 23 2021

A344525 a(n) = Sum_{1 <= x_1, x_2, ... , x_n <= n} gcd(x_1,x_2, ... ,x_n).

Original entry on oeis.org

1, 5, 30, 276, 3165, 47521, 826000, 16843792, 387723045, 10009889889, 285360865350, 8918311872516, 302888304741841, 11112685595264369, 437898699063881208, 18447025862624951488, 827242515246907227633, 39346558373191515582161
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Main diagonal of A344479.

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^n, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^n);
    
  • Python
    from sympy import totient
    def A344525(n): return sum(totient(k)*(n//k)**n for k in range(1,n+1)) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^n.
a(n) ~ n^n. - Vaclav Kotesovec, May 23 2021

A344600 a(n) = Sum_{k=1..n} phi(k) * (floor(n/k)^4 - floor((n-1)/k)^4).

Original entry on oeis.org

1, 16, 67, 192, 373, 768, 1111, 1904, 2601, 3872, 4651, 7280, 7837, 11056, 13215, 17024, 18001, 25488, 25363, 34624, 37093, 44576, 45607, 63440, 60345, 74368, 79803, 96432, 92653, 125616, 113551, 144192, 147297, 168656, 170947, 220320, 194581, 236608, 244759
Offset: 1

Views

Author

Seiichi Manyama, May 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^4), {k, 1, n}]; Array[a, 40] (* Amiram Eldar, May 24 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*((n\k)^4-((n-1)\k)^4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^4))

Formula

Sum_{k=1..n} a(k) = A344523(n).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^4.
Showing 1-5 of 5 results.