A344524 a(n) = Sum_{1 <= i, j, k, l, m <= n} gcd(i,j,k,l,m).
1, 33, 246, 1060, 3165, 8091, 17128, 33936, 60645, 103825, 164886, 259368, 381841, 557595, 784200, 1091056, 1462353, 1968261, 2554810, 3327120, 4230561, 5361463, 6644196, 8302020, 10113445, 12352041, 14873418, 17924356, 21225165, 25341375, 29670556, 34920348, 40625541, 47297365
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
-
PARI
a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, sum(m=1, n, gcd([i, j, k, l, m]))))));
-
PARI
a(n) = sum(k=1, n, eulerphi(k)*(n\k)^5);
-
PARI
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^5)/(1-x))
Formula
a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^5.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^5.
a(n) ~ Pi^4 * n^5 / (90*zeta(5)). - Vaclav Kotesovec, May 23 2021
Comments