A344525 a(n) = Sum_{1 <= x_1, x_2, ... , x_n <= n} gcd(x_1,x_2, ... ,x_n).
1, 5, 30, 276, 3165, 47521, 826000, 16843792, 387723045, 10009889889, 285360865350, 8918311872516, 302888304741841, 11112685595264369, 437898699063881208, 18447025862624951488, 827242515246907227633, 39346558373191515582161
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..386
Programs
-
Mathematica
a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^n, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, May 22 2021 *)
-
PARI
a(n) = sum(k=1, n, eulerphi(k)*(n\k)^n);
-
Python
from sympy import totient def A344525(n): return sum(totient(k)*(n//k)**n for k in range(1,n+1)) # Chai Wah Wu, Aug 05 2024
Formula
a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^n.
a(n) ~ n^n. - Vaclav Kotesovec, May 23 2021