A344566 T(n, k) = (-1)^(n - k)*binomial(n - 1, k - 1)*hypergeom([-(n - k)/2, -(n - k - 1)/2], [1 - n], 4). Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 1, 1, -3, 1, 0, -1, 2, 3, -4, 1, 0, 0, -4, 2, 6, -5, 1, 0, 1, 2, -9, 0, 10, -6, 1, 0, -1, 3, 9, -15, -5, 15, -7, 1, 0, 0, -6, 3, 24, -20, -14, 21, -8, 1, 0, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, -1, 1; [3] 0, 0, -2, 1; [4] 0, 1, 1, -3, 1; [5] 0, -1, 2, 3, -4, 1; [6] 0, 0, -4, 2, 6, -5, 1; [7] 0, 1, 2, -9, 0, 10, -6, 1; [8] 0, -1, 3, 9, -15, -5, 15, -7, 1; [9] 0, 0, -6, 3, 24, -20, -14, 21, -8, 1.
Programs
-
Maple
T := (n,k) -> (-1)^(n-k)*binomial(n-1,k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], 4): seq(seq(simplify(T(n, k)), k=0..n), n = 0..10);
-
SageMath
# uses[riordan_array from A256893] riordan_array(1, x / (1 + x + x^2), 10)
Formula
Riordan_array (1, x / (1 + x + x^2)).
Comments