cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344566 T(n, k) = (-1)^(n - k)*binomial(n - 1, k - 1)*hypergeom([-(n - k)/2, -(n - k - 1)/2], [1 - n], 4). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 1, 1, -3, 1, 0, -1, 2, 3, -4, 1, 0, 0, -4, 2, 6, -5, 1, 0, 1, 2, -9, 0, 10, -6, 1, 0, -1, 3, 9, -15, -5, 15, -7, 1, 0, 0, -6, 3, 24, -20, -14, 21, -8, 1, 0, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1
Offset: 0

Views

Author

Peter Luschny, May 23 2021

Keywords

Comments

The inverse of the Riordan array for directed animals A122896. Without the first column (1, 0, 0, ...) the inverse of the Motzkin triangle A064189.

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0, -1,  1;
[3] 0,  0, -2,  1;
[4] 0,  1,  1, -3,   1;
[5] 0, -1,  2,  3,  -4,   1;
[6] 0,  0, -4,  2,   6,  -5,   1;
[7] 0,  1,  2, -9,   0,  10,  -6, 1;
[8] 0, -1,  3,  9, -15,  -5,  15, -7,  1;
[9] 0,  0, -6,  3,  24, -20, -14, 21, -8, 1.
		

Crossrefs

A117569 (row sums).

Programs

  • Maple
    T := (n,k) -> (-1)^(n-k)*binomial(n-1,k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], 4): seq(seq(simplify(T(n, k)), k=0..n), n = 0..10);
  • SageMath
    # uses[riordan_array from A256893]
    riordan_array(1, x / (1 + x + x^2), 10)

Formula

Riordan_array (1, x / (1 + x + x^2)).