A344567 A(n, k) = [x^k] 2 / (1 - (2*n - 1)*x + sqrt(1 - 2*x - 3*x^2)). The number of n-colored Motzkin arcs of length k. Array read by ascending antidiagonals, n >= 0 and k >= 0.
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 4, 3, 1, 4, 10, 13, 9, 6, 1, 5, 17, 34, 35, 21, 15, 1, 6, 26, 73, 117, 96, 51, 36, 1, 7, 37, 136, 315, 405, 267, 127, 91, 1, 8, 50, 229, 713, 1362, 1407, 750, 323, 232, 1, 9, 65, 358, 1419, 3741, 5895, 4899, 2123, 835, 603
Offset: 0
Examples
Array begins at n = 0, row for n = -1 added for illustration: n\k 0 1 2 3 4 5 6 7 ... [Sequence Triangle] -------------------------------------------------------------------------------- [-1] 1, -1, 2, -2, 5, -3, 15, 3, ... [A344507] [ 0] 1, 0, 1, 1, 3, 6, 15, 36, ... [A005043, A089942] [ 1] 1, 1, 2, 4, 9, 21, 51, 127, ... [A001006, A064189] [ 2] 1, 2, 5, 13, 35, 96, 267, 750, ... [A005773, A038622] [ 3] 1, 3, 10, 34, 117, 405, 1407, 4899, ... [A059738, A126954] [ 4] 1, 4, 17, 73, 315, 1362, 5895, 25528, ... [A344506] [ 5] 1, 5, 26, 136, 713, 3741, 19635, 103071, ... [ 6] 1, 6, 37, 229, 1419, 8796, 54531, 338082, ... [ 7] 1, 7, 50, 358, 2565, 18381, 131727, 944035, ... [ 8] 1, 8, 65, 529, 4307, 35070, 285567, 2325324, ... . Triangle starts: [0] 1; [1] 1, 0; [2] 1, 1, 1; [3] 1, 2, 2, 1; [4] 1, 3, 5, 4, 3; [5] 1, 4, 10, 13, 9, 6; [6] 1, 5, 17, 34, 35, 21, 15; [7] 1, 6, 26, 73, 117, 96, 51, 36; [8] 1, 7, 37, 136, 315, 405, 267, 127, 91; [9] 1, 8, 50, 229, 713, 1362, 1407, 750, 323, 232. . Number of colors = 2, length = 4 -> 35. . /\ _ _ / \ / \ /\/\ 3 x 1 . _ _ / \_ _/ \ 2 x 2 . /\_ _ _ _/\ _/\_ 3 x 4 . _ _ _ _ 1 x 16 . Number of colors = 4, length = 2 -> 17. . /\ 1 x 1 . _ _ 1 x 16
Links
- Martin Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discrete Mathematics, Vol. 204, No. 1-3 (1999), 73-112.
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Paul Drube, Colored Motzkin Paths of Higher Order, Journal of Integer Sequences, Vol. 24 (2021)
Crossrefs
Programs
-
Maple
Arow := proc(n, len) option remember; 2 / (1 - (2*n - 1)*x + sqrt(1 - 2*x - 3*x^2)); seq(coeff(series(%, x, len+2), x, k), k = 0..len) end: T := (n, k) -> Arow(n-k, k+1)[k+1]: for n from 0 to 9 do Arow(n, 7) od; # prints array for n from 0 to 9 do seq(T(n, k), k=0..n) od; # prints triangle # Alternative via series reversion: for n from -1 to 6 do # print the array starting from n = -1 rgf := x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1): subsop(1 = NULL, gfun:-seriestolist(series(rgf, x, 18), 'revogf')) od; # Via recursively defined polynomials: p := proc(n, k) option remember; if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then x*p(n-1, 0) + p(n-1, 1) else p(n-1, k-1) + p(n-1, k) + p(n-1, k+1) fi end: A := (n, k) -> subs(x = n, p(k, 0)): for n from 0 to 8 do lprint(seq(A(n, k), k = 0..9)) od; # Computing the columns: Acol := proc(k, len) seq(subs(x = n, p(k, 0)), n = 0..len) end: for k from 0 to 6 do Acol(k, 9) od;
-
Mathematica
Unprotect[Power]; 0^0 := 1; A[n_, k_] := Sum[(n-1)^j Binomial[k, j] Hypergeometric2F1[(j - k)/2, (j - k + 1)/2, j + 2, 4], {j, 0, k}]; Table[A[n, k], {n, 0, 6}, {k, 0, 8}]
-
PARI
F(n) = {x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1)} M(n,m=n) = {Mat(vectorv(n, i, Vec(serreverse(F(i-1) + O(x*x^m)))))} { my(A=M(8)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, May 27 2021
-
SageMath
def Arow(n, len): R.
= PowerSeriesRing(QQ, default_prec=len) f = x*((n - 1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n - 1)*x + 1) return f.reverse().shift(-1).list() for n in (0..8): print(Arow(n,10))
Formula
A(n, k) = Sum_{j=0..n} (k - 1)^j*binomial(n, j)*hypergeom([(j - n)/2, (j - n + 1)/2], [j + 2], 4).
Arow(n) = [x^n] reverse(x*((n-1)*x + 1) / ((n^2 - n + 1)*x^2 + (2*n-1)*x + 1)) / x.
Computationally more elementary is the following procedure: Let P_n(x) be polynomials defined recursively by P_n(x) = p(n, 0) where p(n, k) = 0 if k < 0 or n < 0 or k > n, p(n, n) = 1, p(n, 0) = x*p(n-1, 0) + p(n-1, 1), and in all other cases p(n, k) = p(n-1, k-1) + p(n-1, k) + p(n-1, k+1). Then A(n, k) = P_k(n).
The coefficients of these polynomials are in A097609. Thus the columns of the array can be calculated as: Acol(k) = [P_k(n) for n >= 0].
Comments