cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344574 Number of ordered pairs (i,j) with 0 < i < j < n such that gcd(i,j,n) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 0, 105, 46, 120, 21, 181, 0, 153, 67, 189, 0, 262, 0, 213, 118, 231, 0, 337, 15, 306, 121, 303, 0, 433, 51, 369, 154, 378, 0, 583, 0, 435, 217, 465
Offset: 1

Views

Author

Andres Cicuttin, May 23 2021

Keywords

Comments

A 4-regular circulant graph of order n, C(n,i,j), is connected if and only if gcd(n,i,j) = 1, where 0 < i < j < n.
a(n) >= 1 iff n is a composite > 4. - Robert Israel, Nov 26 2024

Examples

			a(8) = 3 via (i, j, n) in {(2, 4, 8), (2, 6, 8), (4, 6, 8)} and that's three such tuples. - _David A. Corneth_, Nov 27 2024
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,i,g;
    t:= 0:
    for i from 1 to n-2 do
      g:= igcd(i,n);
      if g > 1 then t:= t + nops(select(s -> igcd(s,g) > 1, [$i+1..n-1])) fi
    od:
    t;
    end proc:
    map(f, [$1..80]); # Robert Israel, Nov 26 2024
  • Mathematica
    npairs[n_]:=Module[{k=0},
    Do[Do[
    If[GCD[i,j,n]>1,k++]
    ,{i,1,j-1}],{j,2,n-1}];
    Return[k]];
    Table[npairs[n],{n,1,60}]
  • PARI
    a(n) = {my(res = 0, d = divisors(factorback(factor(n)[,1]))); for(i = 2, #d, res+= moebius(d[i])*binomial((n-1)\d[i], 2)); -res} \\ David A. Corneth, Nov 27 2024