A344593 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344592(i) = A344592(j), for all i, j >= 1.
1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 5, 1, 6, 7, 8, 1, 9, 1, 10, 11, 12, 1, 13, 14, 15, 1, 16, 1, 17, 1, 1, 18, 19, 20, 21, 1, 22, 23, 1, 1, 1, 1, 24, 25, 26, 1, 27, 18, 28, 29, 30, 1, 31, 32, 33, 34, 35, 1, 36, 1, 37, 38, 39, 40, 41, 1, 42, 43, 44, 1, 45, 1, 46, 47, 48, 49, 50, 1, 51, 11, 52, 1, 53, 54, 55, 56, 57, 1, 58, 59, 60, 61, 62, 63, 64, 1, 65, 66, 11, 1
Offset: 1
Keywords
Examples
Both a(14) = 6 and a(32768) = 6, because A344592(14) = 11 is the sixth distinct value occurring in A344592, and A344592(32768) = A003557(A276086(A108951(32768))) = A003557(A276086(32768)) = A003557(401115) = A003557(3 * 5 * 11^2 * 13 * 17) = 11 also, which is the second time 11 occurs in A344592.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A034386(n) = prod(i=1, primepi(n), prime(i)); A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); }; A344592(n) = A328572(A108951(n)); v344593 = rgs_transform(vector(up_to, n, A344592(n))); A344593(n) = v344593[n];
Comments