A344607 Number of integer partitions of n with reverse-alternating sum >= 0.
1, 1, 2, 2, 4, 4, 8, 8, 15, 16, 27, 29, 48, 52, 81, 90, 135, 151, 220, 248, 352, 400, 553, 632, 859, 985, 1313, 1512, 1986, 2291, 2969, 3431, 4394, 5084, 6439, 7456, 9357, 10836, 13479, 15613, 19273, 22316, 27353, 31659, 38558, 44601, 53998, 62416, 75168
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 15 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (11111) (321) (421) (422) (411) (511) (431) (2211) (22111) (521) (21111) (31111) (611) (111111) (1111111) (2222) (3311) (22211) (32111) (41111) (221111) (2111111) (11111111)
Crossrefs
The non-reversed version is A000041.
The odd bisection is A160786.
The complement is counted by A344608.
The even bisection is A344611.
A103919 counts partitions by sum and alternating sum.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30}]
Comments