cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 3, 1, 1, 7, 9, 6, 3, 1, 1, 11, 14, 12, 6, 3, 1, 1, 15, 23, 20, 12, 6, 3, 1, 1, 22, 34, 35, 21, 12, 6, 3, 1, 1, 30, 52, 56, 38, 21, 12, 6, 3, 1, 1, 42, 75, 91, 62, 38, 21, 12, 6, 3, 1, 1, 56, 109, 140, 103, 63, 38, 21, 12, 6, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 31 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts.
Also the number of reversed integer partitions of 2n with alternating sum 2k.

Examples

			Triangle begins:
   1
   1   1
   2   1   1
   3   3   1   1
   5   5   3   1   1
   7   9   6   3   1   1
  11  14  12   6   3   1   1
  15  23  20  12   6   3   1   1
  22  34  35  21  12   6   3   1   1
  30  52  56  38  21  12   6   3   1   1
  42  75  91  62  38  21  12   6   3   1   1
  56 109 140 103  63  38  21  12   6   3   1   1
  77 153 215 163 106  63  38  21  12   6   3   1   1
Row n = 5 counts the following partitions:
  (55)          (442)        (433)      (622)    (811)  (10)
  (3322)        (541)        (532)      (721)
  (4411)        (22222)      (631)      (61111)
  (222211)      (32221)      (42211)
  (331111)      (33211)      (52111)
  (22111111)    (43111)      (4111111)
  (1111111111)  (2221111)
                (3211111)
                (211111111)
		

Crossrefs

The columns with initial 0's removed appear to converge to A006330.
The odd version is A239829.
The non-reversed version is A239830.
Row sums are A344611, odd bisection of A344607.
Including odd n and negative k gives A344612 (strict: A344739).
The strict case is A344649 (row sums: A344650).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],k==sats[#]&]],{n,0,15,2},{k,0,n,2}]