A344623 Pseudo-involution companion for the Fibonacci generating function.
1, 3, 9, 32, 126, 538, 2429, 11412, 55201, 272993, 1373784, 7011297, 36201841, 188761743, 992491049, 5256244537, 28013213196, 150128293038, 808543940999, 4373798584407, 23753913152691, 129469596050953, 707969244301884, 3882857013894482, 21353585584100401
Offset: 0
Keywords
Links
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Formula
G.f.: A(x) satisfies A(-x*A(x)) = 1/A(x) and F(-x*A(x)) = 1/F(x), where x*F(x) is g.f. of A000045. I.e., the Riordan array (F(x), x*A(x)) is a pseudo-involution.
G.f.: A(x) = (F(x) - 1)*C(F(x) - 1)/x, where C(x) is the g.f. of A000108 and x*F(x) is g.f. of A000045.
G.f.: A(x) = (1 - sqrt((1 - 5*x - 5*x^2)/(1 - x - x^2)))/(2x).
G.f.: Let B(x) = 2 + g.f.(A200031(n)), then A(x) = 1 + x*A(x)*B(x^2*A(x)).
a(n) ~ sqrt(3) * 5^(n/2 + 1) * phi^(2*n + 1) / (8*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 25 2021
Comments