A344650 Number of strict odd-length integer partitions of 2n.
0, 1, 1, 2, 3, 5, 8, 11, 16, 23, 32, 44, 61, 82, 111, 148, 195, 256, 334, 432, 557, 713, 908, 1152, 1455, 1829, 2291, 2859, 3554, 4404, 5440, 6697, 8222, 10066, 12288, 14964, 18176, 22023, 26625, 32117, 38656, 46432, 55661, 66592, 79523, 94793, 112792, 133984
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 16 partitions: (2) (4) (6) (8) (10) (12) (14) (16) (3,2,1) (4,3,1) (5,3,2) (5,4,3) (6,5,3) (7,5,4) (5,2,1) (5,4,1) (6,4,2) (7,4,3) (7,6,3) (6,3,1) (6,5,1) (7,5,2) (8,5,3) (7,2,1) (7,3,2) (7,6,1) (8,6,2) (7,4,1) (8,4,2) (8,7,1) (8,3,1) (8,5,1) (9,4,3) (9,2,1) (9,3,2) (9,5,2) (9,4,1) (9,6,1) (10,3,1) (10,4,2) (11,2,1) (10,5,1) (11,3,2) (11,4,1) (12,3,1) (13,2,1) (6,4,3,2,1)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Crossrefs
Even bisection of A067659.
The opposite type of strict partition (even length and odd sum) is A343942.
Row sums of A344649.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A343941 counts strict partitions of 2n with reverse-alternating sum 4.
A344604 counts wiggly compositions with twins.
A344739 counts strict partitions by sum and reverse-alternating sum.
A344741 counts partitions of 2n with reverse-alternating sum -2.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1)))) end: a:= n-> b(2*n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30,2}]
Comments