A344652 Number of permutations of the prime indices of n with no adjacent triples (..., x, y, z, ...) such that x <= y <= z.
1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 1, 1, 5, 1, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 0, 0, 2, 1, 7, 2, 2, 2
Offset: 1
Keywords
Examples
The permutations for n = 2, 6, 8, 30, 36, 60, 180, 210, 360: (1) (12) (132) (1212) (1213) (12132) (1324) (121213) (21) (213) (2121) (1312) (13212) (1423) (121312) (231) (2211) (1321) (13221) (1432) (121321) (312) (2131) (21213) (2143) (131212) (321) (2311) (21312) (2314) (132121) (3121) (21321) (2413) (132211) (3211) (22131) (2431) (212131) (23121) (3142) (213121) (23211) (3214) (213211) (31212) (3241) (221311) (32121) (3412) (231211) (32211) (3421) (312121) (4132) (321211) (4213) (4231) (4312) (4321)
Crossrefs
All permutations of prime indices are counted by A008480.
The case of permutations is A049774.
Avoiding (3,2,1) also gives A344606.
The wiggly case is A345164.
A001250 counts wiggly permutations.
A335452 counts anti-run permutations of prime indices.
Counting compositions by patterns:
- A102726 avoiding (1,2,3).
- A128761 avoiding (1,2,3) adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.
Comments