cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001250 Number of alternating permutations of order n.

Original entry on oeis.org

1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, 44736512, 398721962, 3807514624, 38783024290, 419730685952, 4809759350882, 58177770225664, 740742376475050, 9902996106248192, 138697748786275802, 2030847773013704704, 31029068327114173810
Offset: 0

Views

Author

Keywords

Comments

For n>1, a(n) is the number of permutations of order n with the length of longest run equal 2.
Boustrophedon transform of the Euler numbers (A000111). [Berry et al., 2013] - N. J. A. Sloane, Nov 18 2013
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j < k or i < j >= k. a(4) = 10: 0010, 0011, 0020, 0021, 0022, 0101, 0102, 0103, 0112, 0113. - Alois P. Heinz, Oct 16 2019

Examples

			1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 122*x^6 + 544*x^7 + 2770*x^8 + ...
From _Gus Wiseman_, Jun 21 2021: (Start)
The a(0) = 1 through a(4) = 10 permutations:
  ()  (1)  (1,2)  (1,3,2)  (1,3,2,4)
           (2,1)  (2,1,3)  (1,4,2,3)
                  (2,3,1)  (2,1,4,3)
                  (3,1,2)  (2,3,1,4)
                           (2,4,1,3)
                           (3,1,4,2)
                           (3,2,4,1)
                           (3,4,1,2)
                           (4,1,3,2)
                           (4,2,3,1)
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111. A diagonal of A010094.
The version for permutations of prime indices is A345164.
The version for compositions is A025047, ranked by A345167.
The version for patterns is A345194.
A049774 counts permutations avoiding adjacent (1,2,3).
A344614 counts compositions avoiding adjacent (1,2,3) and (3,2,1).
A344615 counts compositions avoiding the weak adjacent pattern (1,2,3).
A344654 counts partitions without a wiggly permutation, ranked by A344653.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Row sums of A104345.

Programs

  • Haskell
    a001250 n = if n == 1 then 1 else 2 * a000111 n
    -- Reinhard Zumkeller, Sep 17 2014
    
  • Maple
    # With Eulerian polynomials:
    A := (n, x) -> `if`(n<2, 1/2/(1+I)^(1-n), add(add((-1)^j*binomial(n+1, j)*(m+1-j)^n, j=0..m)*x^m, m=0..n-1)):
    A001250 := n -> 2*(I-1)^(1-n)*exp(I*(n-1)*Pi/2)*A(n,I);
    seq(A001250(i), i=0..22); # Peter Luschny, May 27 2012
    # second Maple program:
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> `if`(n<2, 1, 2)*b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    a[n_] := 4*Abs[PolyLog[-n, I]]; a[0] = a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 09 2016, after M. F. Hasler *)
    Table[Length[Select[Permutations[Range[n]],And@@(!(OrderedQ[#]||OrderedQ[Reverse[#]])&/@Partition[#,3,1])&]],{n,8}] (* Gus Wiseman, Jun 21 2021 *)
    a[0]:=1; a[1]:=1; a[n_]:=a[n]=1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k,1, n-1}]; Join[{a[0], a[1]}, Map[2 #! a[#]&, Range[2,24]]] (* Oliver Seipel, May 27 2024 *)
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for( k=2, n+3, t=0; v = vector( k, i, if( i>1, t += v[k+1 - i]))); v[3])} /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n)))^2, n))} /* Michael Somos, Feb 05 2011 */
    
  • PARI
    A001250(n)=sum(m=0,n\2,my(k);(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)*2-(n==1)  \\ M. F. Hasler, May 19 2012
    
  • PARI
    A001250(n)=4*abs(polylog(-n,I))-(n==1)  \\ M. F. Hasler, May 20 2012
    
  • PARI
    my(x='x+O('x^66), egf=1+2*(tan(x)+1/cos(x))-2-x); Vec(serlaplace(egf)) /* Joerg Arndt, May 28 2012 */
    
  • Python
    from itertools import accumulate, islice
    def A001250_gen(): # generator of terms
        yield from (1,1)
        blist = (0,2)
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A001250_list = list(islice(A001250_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
    
  • Python
    from sympy import bernoulli, euler
    def A001250(n): return 1 if n<2 else abs(((1<Chai Wah Wu, Nov 13 2024
  • Sage
    # Algorithm of L. Seidel (1877)
    def A001250_list(n) :
        R = [1]; A = {-1:0, 0:2}; k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if i > 1 : R.append(A[-i//2] if i%2 == 0 else A[i//2])
        return R
    A001250_list(22) # Peter Luschny, Mar 31 2012
    

Formula

a(n) = coefficient of x^(n-1)/(n-1)! in power series expansion of (tan(x) + sec(x))^2 = (tan(x)+1/cos(x))^2.
a(n) = coefficient of x^n/n! in power series expansion of 2*(tan(x) + sec(x)) - 2 - x. - Michael Somos, Feb 05 2011
For n>1, a(n) = 2 * A000111(n). - Michael Somos, Mar 19 2011
a(n) = 4*|Li_{-n}(i)| - [n=1] = Sum_{m=0..n/2} (-1)^m*2^(1-k)*Sum_{j=0..k} binomial(k,j)*(-1)^j*(k-2*j)^(n+1)/k - [n=1], where k = k(m) = n+1-2*m and [n=1] equals 1 if n=1 and zero else; Li denotes the polylogarithm (and i^2 = -1). - M. F. Hasler, May 20 2012
From Sergei N. Gladkovskii, Jun 18 2012: (Start)
Let E(x) = 2/(1-sin(x))-1 (essentially the e.g.f.), then
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = 8*k + 6 - x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).
E(x) = (tan(x) + sec(x))^2 = -1 + 2/(1-x*G(0)) where G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
G.f.: conjecture: 2*T(0)/(1-x) -1, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
a(n) ~ 2^(n+3) * n! / Pi^(n+1). - Vaclav Kotesovec, Sep 06 2014
a(n) = Sum_{k=0..n-1} A109449(n-1,k)*A000111(k). - Reinhard Zumkeller, Sep 17 2014

Extensions

Edited by Max Alekseyev, May 04 2012
a(0)=1 prepended by Alois P. Heinz, Nov 29 2015

A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 28 2021

Keywords

Comments

Differs from A335448 in having a(x^2) = 0 and a(270) = 0.
These are permutations of the prime factors of n, counting multiplicity, with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins (x,x) is A345164, which is identical to this sequence except when n is the square of a prime.

Examples

			The permutations for n = 2, 6, 30, 180, 210, 300, 420, 720, 840:
  2   23   253   23253   2537   25253   23275   2323252   232527
      32   325   32325   2735   25352   25273   2325232   232725
           352   32523   3275   32525   25372   2523232   252327
           523   35232   3527   35252   27253             252723
                 52323   3725   52325   27352             272325
                         5273   52523   32527             272523
                         5372           32725             325272
                         5723           35272             327252
                         7253           37252             523272
                         7352           52327             527232
                                        52723             723252
                                        57232             725232
                                        72325
                                        72523
For example, there are no alternating permutations of the prime factors of 270 because the only anti-runs are {3,2,3,5,3} and {3,5,3,2,3}, neither of which is alternating, so a(270) = 0.
		

Crossrefs

The version for permutations is A001250.
The extension to anti-run permutations is A335452.
The version for compositions is A344604.
The version for patterns is A344605.
Positions of zeros are A344653 (counted by A344654).
Not including twins (x,x) gives A345164.
A008480 counts permutations of prime indices (strict: A335489, rank: A333221).
A056239 adds up prime indices, row sums of A112798.
A071321 and A071322 are signed sums of prime factors.
A316523 is a signed sum of prime multiplicities.
A316524 and A344616 are signed sums of prime indices.
A325534 counts separable partitions (ranked by A335433).
A325535 counts inseparable partitions (ranked by A335448).
A344740 counts partitions with an alternating permutation or twin (x,x).

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,100}]

A344653 Every permutation of the prime factors of n has a consecutive monotone triple, i.e., a triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 125, 128, 135, 136, 144, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378, 384
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335448 in lacking squares and having 270 etc.
First differs from A345193 in having 270.
Such a permutation is characterized by being neither a twin (x,x) nor wiggly (A025047, A345192). A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   8: {1,1,1}
  16: {1,1,1,1}
  24: {1,1,1,2}
  27: {2,2,2}
  32: {1,1,1,1,1}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  80: {1,1,1,1,3}
  81: {2,2,2,2}
  88: {1,1,1,5}
  96: {1,1,1,1,1,2}
For example, 36 has prime indices (1,1,2,2), which has the two wiggly permutations (1,2,1,2) and (2,1,2,1), so 36 is not in the sequence.
		

Crossrefs

A superset of A335448, counted by A325535.
Positions of 0's in A344606.
These partitions are counted by A344654.
The complement is A344742, counted by A344740.
The separable case is A345173, counted by A345166.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}&]

Formula

Complement of A001248 in A345171.

A344614 Number of compositions of n with no adjacent triples (..., x, y, z, ...) where x < y < z or x > y > z.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 30, 58, 110, 209, 397, 753, 1429, 2711, 5143, 9757, 18511, 35117, 66621, 126389, 239781, 454897, 863010, 1637260, 3106138, 5892821, 11179603, 21209446, 40237641, 76337091, 144823431, 274752731, 521249018, 988891100, 1876081530, 3559220898, 6752400377
Offset: 0

Views

Author

Gus Wiseman, May 27 2021

Keywords

Comments

These compositions avoid the strict consecutive patterns (1,2,3) and (3,2,1), the weak version being A344604.

Examples

			The a(6) = 30 compositions are:
  (6)  (15)  (114)  (1113)  (11112)  (111111)
       (24)  (132)  (1122)  (11121)
       (33)  (141)  (1131)  (11211)
       (42)  (213)  (1212)  (12111)
       (51)  (222)  (1221)  (21111)
             (231)  (1311)
             (312)  (2112)
             (411)  (2121)
                    (2211)
                    (3111)
Missing are: (123), (321).
		

Crossrefs

A001250 counts alternating permutations.
A005649 counts anti-run patterns.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A325534 counts separable partitions.
A325535 counts inseparable partitions.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime factors with twins.
Counting compositions by patterns:
- A003242 avoiding (1,1) adjacent.
- A011782 no conditions.
- A106351 avoiding (1,1) adjacent by sum and length.
- A128695 avoiding (1,1,1) adjacent.
- A128761 avoiding (1,2,3).
- A232432 avoiding (1,1,1).
- A335456 all patterns.
- A335457 all patterns adjacent.
- A335514 matching (1,2,3).
- A344604 weakly avoiding (1,2,3) and (3,2,1) adjacent.
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,y_,z_,_}/;xy>z]&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A345164 Number of alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335452 at a(30) = 4, A335452(30) = 6. The anti-runs (2,3,5) and (5,3,2) are not alternating.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutation, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(n) alternating permutations of prime indices for n = 180, 210, 300, 420, 900:
  (12132)  (1324)  (13132)  (12143)  (121323)
  (21213)  (1423)  (13231)  (13142)  (132312)
  (21312)  (2143)  (21313)  (13241)  (213132)
  (23121)  (2314)  (23131)  (14132)  (213231)
  (31212)  (2413)  (31213)  (14231)  (231213)
           (3142)  (31312)  (21314)  (231312)
           (3241)           (21413)  (312132)
           (3412)           (23141)  (323121)
           (4132)           (24131)
           (4231)           (31214)
                            (31412)
                            (34121)
                            (41213)
                            (41312)
		

Crossrefs

Counting all permutations gives A008480.
Dominated by A335452 (number of separations of prime factors).
Including twins (x,x) gives A344606.
Positions of zeros are A345171, counted by A345165.
Positions of nonzero terms are A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344654 counts non-twin partitions w/o alternating permutation, rank: A344653.
A344740 counts twins and partitions w/ alternating permutation, rank: A344742.
A345166 counts separable partitions w/o alternating permutation, rank: A345173.
A345170 counts partitions with a alternating permutation.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],wigQ]],{n,30}]

A344615 Number of compositions of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 17, 29, 50, 84, 143, 241, 408, 688, 1162, 1959, 3305, 5571, 9393, 15832, 26688, 44980, 75812, 127769, 215338, 362911, 611620, 1030758, 1737131, 2927556, 4933760, 8314754, 14012668, 23615198, 39798098, 67070686, 113032453, 190490542, 321028554
Offset: 0

Views

Author

Gus Wiseman, May 27 2021

Keywords

Comments

These compositions avoid the weak consecutive pattern (1,2,3), the strict version being A128761.

Examples

			The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)    (3)    (4)      (5)        (6)
       (1,1)  (1,2)  (1,3)    (1,4)      (1,5)
              (2,1)  (2,2)    (2,3)      (2,4)
                     (3,1)    (3,2)      (3,3)
                     (1,2,1)  (4,1)      (4,2)
                     (2,1,1)  (1,3,1)    (5,1)
                              (2,1,2)    (1,3,2)
                              (2,2,1)    (1,4,1)
                              (3,1,1)    (2,1,3)
                              (1,2,1,1)  (2,3,1)
                                         (3,1,2)
                                         (3,2,1)
                                         (4,1,1)
                                         (1,2,1,2)
                                         (1,3,1,1)
                                         (2,1,2,1)
                                         (2,2,1,1)
		

Crossrefs

The case of permutations is A049774.
The strict non-adjacent version is A102726.
The case of permutations of prime indices is A344652.
A001250 counts alternating permutations.
A005649 counts anti-run patterns.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime factors with twins.
Counting compositions by patterns:
- A003242 avoiding (1,1) adjacent.
- A011782 no conditions.
- A106351 avoiding (1,1) adjacent by sum and length.
- A128695 avoiding (1,1,1) adjacent.
- A128761 avoiding (1,2,3).
- A232432 avoiding (1,1,1).
- A335456 all patterns.
- A335457 all patterns adjacent.
- A335514 matching (1,2,3).
- A344604 weakly avoiding (1,2,3) and (3,2,1) adjacent.
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z]&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A345171 Numbers whose multiset of prime factors has no alternating permutation.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335448 in having 270.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
Also Heinz numbers of integer partitions without a wiggly permutation, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   49: {4,4}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
		

Crossrefs

Removing squares of primes A001248 gives A344653, counted by A344654.
A superset of A335448, which is counted by A325535.
Positions of 0's in A345164.
The partitions with these Heinz numbers are counted by A345165.
The complement is A345172, counted by A345170.
The separable case is A345173, counted by A345166.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, complement A261983.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A344606 counts alternating permutations of prime indices with twins.
A344742 ranks twins and partitions with an alternating permutation.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]

A344742 Numbers whose prime factors have a permutation with no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335433 in having all squares of primes (A001248) and lacking 270 etc.
Also Heinz numbers of integer partitions that are either a twin (x,x) or have a wiggly permutation.
(1) The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
(2) A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          18: {1,2,2}     36: {1,1,2,2}
      2: {1}         19: {8}         37: {12}
      3: {2}         20: {1,1,3}     38: {1,8}
      4: {1,1}       21: {2,4}       39: {2,6}
      5: {3}         22: {1,5}       41: {13}
      6: {1,2}       23: {9}         42: {1,2,4}
      7: {4}         25: {3,3}       43: {14}
      9: {2,2}       26: {1,6}       44: {1,1,5}
     10: {1,3}       28: {1,1,4}     45: {2,2,3}
     11: {5}         29: {10}        46: {1,9}
     12: {1,1,2}     30: {1,2,3}     47: {15}
     13: {6}         31: {11}        49: {4,4}
     14: {1,4}       33: {2,5}       50: {1,3,3}
     15: {2,3}       34: {1,7}       51: {2,7}
     17: {7}         35: {3,4}       52: {1,1,6}
For example, the prime factors of 120 are (2,2,2,3,5), with the two wiggly permutations (2,3,2,5,2) and (2,5,2,3,2), so 120 is in the sequence.
		

Crossrefs

Positions of nonzero terms in A344606.
The complement is A344653, counted by A344654.
These partitions are counted by A344740.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001248 lists squares of primes.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A011782 counts compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]

Formula

Union of A345172 (wiggly) and A001248 (squares of primes).

A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.

Original entry on oeis.org

270, 378, 594, 702, 918, 1026, 1242, 1566, 1620, 1674, 1750, 1998, 2214, 2268, 2322, 2538, 2625, 2750, 2862, 3186, 3250, 3294, 3564, 3618, 3834, 3942, 4050, 4125, 4212, 4250, 4266, 4482, 4750, 4806, 4875, 5238, 5454, 5508, 5562, 5670, 5750, 5778, 5886, 6102
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A multiset is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   270: {1,2,2,2,3}
   378: {1,2,2,2,4}
   594: {1,2,2,2,5}
   702: {1,2,2,2,6}
   918: {1,2,2,2,7}
  1026: {1,2,2,2,8}
  1242: {1,2,2,2,9}
  1566: {1,2,2,2,10}
  1620: {1,1,2,2,2,2,3}
  1674: {1,2,2,2,11}
  1750: {1,3,3,3,4}
  1998: {1,2,2,2,12}
  2214: {1,2,2,2,13}
  2268: {1,1,2,2,2,2,4}
  2322: {1,2,2,2,14}
		

Crossrefs

The partitions with these Heinz numbers are counted by A345166.
Permutations of this type are ranked by A345169.
Numbers with a factorization of this type are counted by A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating compositions, ascend A025048, descend A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices with twins.
A344740 counts twins and partitions with an alternating permutation.
A345164 counts alternating permutations of prime factors.
A345165 counts partitions without an alternating permutation.
A345170 counts partitions with an alternating permutation.
A345192 counts non-alternating compositions, without twins A348377.
A348379 counts factorizations with an alternating permutation.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&]

Formula

Equals A345171 /\ A335433.

A345169 Numbers k such that the k-th composition in standard order is a non-alternating anti-run.

Original entry on oeis.org

37, 52, 69, 101, 104, 105, 133, 137, 150, 165, 180, 197, 200, 208, 209, 210, 261, 265, 274, 278, 300, 301, 308, 325, 328, 357, 360, 361, 389, 393, 400, 401, 406, 416, 417, 418, 421, 422, 436, 517, 521, 529, 530, 534, 549, 550, 556, 557, 564, 581, 600, 601, 613
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The sequence of terms together with their binary indices begins:
     37: (3,2,1)      210: (1,2,3,2)      400: (1,3,5)
     52: (1,2,3)      261: (6,2,1)        401: (1,3,4,1)
     69: (4,2,1)      265: (5,3,1)        406: (1,3,2,1,2)
    101: (1,3,2,1)    274: (4,3,2)        416: (1,2,6)
    104: (1,2,4)      278: (4,2,1,2)      417: (1,2,5,1)
    105: (1,2,3,1)    300: (3,2,1,3)      418: (1,2,4,2)
    133: (5,2,1)      301: (3,2,1,2,1)    421: (1,2,3,2,1)
    137: (4,3,1)      308: (3,1,2,3)      422: (1,2,3,1,2)
    150: (3,2,1,2)    325: (2,4,2,1)      436: (1,2,1,2,3)
    165: (2,3,2,1)    328: (2,3,4)        517: (7,2,1)
    180: (2,1,2,3)    357: (2,1,3,2,1)    521: (6,3,1)
    197: (1,4,2,1)    360: (2,1,2,4)      529: (5,4,1)
    200: (1,3,4)      361: (2,1,2,3,1)    530: (5,3,2)
    208: (1,2,5)      389: (1,5,2,1)      534: (5,2,1,2)
    209: (1,2,4,1)    393: (1,4,3,1)      549: (4,3,2,1)
		

Crossrefs

A version counting partitions is A345166, ranked by A345173.
These compositions are counted by A345195.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns (with twins: A344605).
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Anti-runs are A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
- Non-anti-runs are A348612.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Strictly increasing compositions (sets) are A333255.
- Strictly decreasing compositions (strict partitions) are A333256.
- Anti-runs are A333489.
- Alternating compositions are A345167.
- Non-Alternating compositions are A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[0,1000],sepQ[stc[#]]&&!wigQ[stc[#]]&]

Formula

Intersection of A345168 (non-alternating) and A333489 (anti-run).
Showing 1-10 of 17 results. Next