A344677 Number of partitions of n containing a prime number of primes and an arbitrary number of nonprimes.
0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 20, 26, 36, 49, 68, 90, 120, 154, 201, 258, 330, 418, 532, 666, 834, 1041, 1290, 1592, 1958, 2404, 2935, 3588, 4345, 5278, 6366, 7692, 9215, 11096, 13230, 15853, 18831, 22477, 26580, 31620, 37247, 44145, 51851, 61247, 71681, 84445
Offset: 0
Keywords
Examples
a(6) = 4 because there are 4 partitions of 6 that contain a prime number of primes (including repetitions). These partitions are [3,3], [3,2,1], [2,2,2], [2,2,1,1].
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nterms=50;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,IntegerPartitions[n]]],{n,0,nterms-1}] (* Second program: *) seq[n_] := Module[{p}, p = 1/Product[1 - If[PrimeQ[k], y*x^k, 0] + O[x]^n, {k, 2, n}]; CoefficientList[Sum[If[PrimeQ[k], Coefficient[p, y, k], 0], {k, 2, n}]/QPochhammer[x + O[x]^n]/(p /. y -> 1), x]]; seq[50] (* Jean-François Alcover, May 27 2021, after Andrew Howroyd *)
-
PARI
seq(n)={my(p=1/prod(k=2, n, 1 - if(isprime(k), y*x^k) + O(x*x^n))); Vec(sum(k=2, n, if(isprime(k), polcoef(p,k,y)))/eta(x+O(x*x^n))/subst(p,y,1), -(n+1))} \\ Andrew Howroyd, May 26 2021