cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344677 Number of partitions of n containing a prime number of primes and an arbitrary number of nonprimes.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 20, 26, 36, 49, 68, 90, 120, 154, 201, 258, 330, 418, 532, 666, 834, 1041, 1290, 1592, 1958, 2404, 2935, 3588, 4345, 5278, 6366, 7692, 9215, 11096, 13230, 15853, 18831, 22477, 26580, 31620, 37247, 44145, 51851, 61247, 71681, 84445
Offset: 0

Views

Author

Paolo Xausa, May 26 2021

Keywords

Examples

			a(6) = 4 because there are 4 partitions of 6 that contain a prime number of primes (including repetitions). These partitions are [3,3], [3,2,1], [2,2,2], [2,2,1,1].
		

Crossrefs

Programs

  • Mathematica
    nterms=50;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,IntegerPartitions[n]]],{n,0,nterms-1}]
    (* Second program: *)
    seq[n_] := Module[{p}, p = 1/Product[1 - If[PrimeQ[k], y*x^k, 0] + O[x]^n, {k, 2, n}]; CoefficientList[Sum[If[PrimeQ[k], Coefficient[p, y, k], 0], {k, 2, n}]/QPochhammer[x + O[x]^n]/(p /. y -> 1), x]];
    seq[50] (* Jean-François Alcover, May 27 2021, after Andrew Howroyd *)
  • PARI
    seq(n)={my(p=1/prod(k=2, n, 1 - if(isprime(k), y*x^k) + O(x*x^n))); Vec(sum(k=2, n, if(isprime(k), polcoef(p,k,y)))/eta(x+O(x*x^n))/subst(p,y,1), -(n+1))} \\ Andrew Howroyd, May 26 2021