A344679 Number of 2-matchings of the n-th centered square grid graph.
0, 0, 86, 544, 1854, 4688, 9910, 18576, 31934, 51424, 78678, 115520, 163966, 226224, 304694, 401968, 520830, 664256, 835414, 1037664, 1274558, 1549840, 1867446, 2231504, 2646334, 3116448, 3646550, 4241536, 4906494, 5646704, 6467638, 7374960, 8374526, 9472384, 10674774
Offset: 1
Examples
For n=1 there is no way to place 2 dominoes in the centered square grid graphs, because they don't have enough space to be placed, so a(1)=0. For n=2 there is no way to place 2 dominoes in the centered square grid graphs, because the first domino will cover the center square every time, so a(2)=0.
Links
- Nicolas Bělohoubek, Visualization of 3rd term.
- Ron Knott, 1.2.5 The "other" Aztec Diamonds
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Formula
a(n) = 2*(n-2)*(4n^3-8n^2+n+4) for n > 1.
From Stefano Spezia, Aug 17 2021: (Start)
G.f.: 2*x^3*(43 + 57*x - 3*x^2 - x^3)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 6. (End)
Comments