cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337584 Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) that match the multiplicity multiset of some partition of n (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 3, 2, 1, 1, 1, 1, 3, 2, 4, 3, 2, 1, 1, 1, 2, 2, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 2, 2, 4, 5, 7, 8, 8, 5, 5, 3
Offset: 1

Views

Author

Álvar Ibeas, Sep 02 2020

Keywords

Comments

The relevant partitions of n have exactly k parts.
Column k is k-periodic from n = k*(k+1)/2.

Examples

			There is no partition of 5 with multiplicity multiset (3) or (1, 1, 1).
Indeed, both (2 = A008284(5, 3)) partitions of 5 into 3 parts (namely, (3, 1, 1) and (2, 2, 1)) have multiplicities (2, 1). Therefore, T(5, 3) = 1.
Triangle begins:
  k:  1 2 3 4 5 6 7 8 9 10
      --------------------
n=1:  1
n=2:  1 1
n=3:  1 1 1
n=4:  1 2 1 1
n=5:  1 1 1 1 1
n=6:  1 2 3 2 1 1
n=7:  1 1 2 2 2 1 1
n=8:  1 2 2 4 3 2 1 1
n=9:  1 1 3 2 4 3 2 1 1
n=10: 1 2 2 4 4 4 3 2 1 1
		

Crossrefs

Cf. A000041, A008284, A088887 (row sums).
T(2n,n) gives A344680.

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
         {b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(x^add(i, i=t), t=b(n$2))):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 17 2021

Formula

If k > (2*n+1)/3, T(n, k) = A088887(n - k).
If n >= k*(k+1)/2, T(n, k) = Sum_{d | gcd(n, k)} A000837(k/d).
T(n, k) = A000041(k) iff k|n and n >= k*(k+1)/2.
Showing 1-1 of 1 results.