cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344688 Decimal expansion of 3236 * Pi^9 / (55801305 * sqrt(3)).

Original entry on oeis.org

9, 9, 8, 0, 5, 0, 1, 9, 5, 6, 5, 7, 0, 7, 7, 2, 3, 7, 2, 2, 7, 8, 6, 3, 8, 2, 2, 7, 3, 0, 3, 1, 3, 7, 2, 5, 7, 3, 9, 1, 5, 2, 1, 4, 4, 4, 5, 6, 9, 1, 8, 6, 7, 6, 9, 9, 6, 9, 5, 0, 0, 1, 3, 5, 1, 2, 0, 8, 0, 8, 5, 2, 4, 7, 2, 2, 3, 4, 2, 6, 8, 6, 6, 5, 9, 6, 3
Offset: 0

Views

Author

Sean A. Irvine, Aug 17 2021

Keywords

Examples

			0.998050195657077237227863822730...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (310).

Crossrefs

Programs

  • Mathematica
    RealDigits[3236 * Pi^9 / (55801305 * Sqrt[3]), 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)

Formula

Equals 2^2 * 809 * Pi^9 / (3^13 * 5 * 7 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( 1/(3*k+1)^9 - 1/(3*k-1)^9 ).
Equals Product_{p prime} (1 - Kronecker(-3, p)/p^9)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^9)^(-1). - Amiram Eldar, Nov 06 2023