cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344705 a(n) = n + A001615(n) - sigma(n), where A001615 is the Dedekind psi-function, and sigma(n) gives the sum of divisors of n; difference between psi and the sum of proper divisors.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 8, 10, 11, 8, 13, 14, 15, 9, 17, 15, 19, 14, 21, 22, 23, 12, 24, 26, 23, 20, 29, 30, 31, 17, 33, 34, 35, 17, 37, 38, 39, 22, 41, 42, 43, 32, 39, 46, 47, 20, 48, 47, 51, 38, 53, 42, 55, 32, 57, 58, 59, 36, 61, 62, 55, 33, 65, 66, 67, 50, 69, 70, 71, 21, 73, 74, 71, 56, 77, 78, 79, 38, 68, 82
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative term occurs as a(1440) = -18.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p-1); a[1] = 1; a[n_] := Module[{fct = FactorInteger[n]}, n * (Times @@ (1 + 1/fct[[;; , 1]]) + 1) - Times @@ f @@@ fct]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d));
    A344705(n) = ((n + A001615(n)) - sigma(n));

Formula

a(n) = A001615(n) - A001065(n) = n - A244963(n) = n + A001615(n) - sigma(n).
a(n) = A033879(n) + A306927(n).
a(n) = n + A344753(n) - 2*A001065(n).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 + 1 - Pi^2/6 = 0.874883... . - Amiram Eldar, Dec 08 2023