cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344725 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/j)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 10, 1, 33, 83, 74, 32, 14, 1, 65, 245, 274, 136, 52, 16, 1, 129, 731, 1058, 644, 254, 66, 20, 1, 257, 2189, 4162, 3160, 1396, 382, 92, 23, 1, 513, 6563, 16514, 15692, 8054, 2502, 596, 115, 27, 1, 1025, 19685, 65794, 78256, 47452, 17086, 4388, 833, 147, 29
Offset: 1

Views

Author

Seiichi Manyama, May 27 2021

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,    1,     1, ...
   3,  5,   9,   17,   33,    65, ...
   5, 11,  29,   83,  245,   731, ...
   8, 22,  74,  274, 1058,  4162, ...
  10, 32, 136,  644, 3160, 15692, ...
  14, 52, 254, 1396, 8054, 47452, ...
		

Crossrefs

Columns k=1..5 give A006218, A222548, A318742, A318743, A318744.
T(n,n) gives A332469.

Programs

  • Mathematica
    T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, (n\j)^k);
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A344725_T(n,k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1,s+1))
    def A344725_gen(): # generator of terms
         return (A344725_T(k+1,n-k) for n in count(1) for k in range(n))
    A344725_list = list(islice(A344725_gen(),30)) # Chai Wah Wu, Oct 26 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k - (d - 1)^k.