A344741 Number of integer partitions of 2n with reverse-alternating sum -2.
0, 0, 1, 2, 4, 8, 14, 24, 39, 62, 95, 144, 212, 309, 442, 626, 873, 1209, 1653, 2245, 3019, 4035, 5348, 7051, 9229, 12022, 15565, 20063, 25722, 32847, 41746, 52862, 66657, 83768, 104873, 130889, 162797, 201902, 249620, 307789, 378428, 464122, 567721, 692828, 843448
Offset: 0
Keywords
Examples
The a(2) = 1 through a(6) = 14 partitions: (31) (42) (53) (64) (75) (3111) (3221) (3331) (4332) (4211) (4222) (4431) (311111) (4321) (5322) (5311) (5421) (322111) (6411) (421111) (322221) (31111111) (333111) (422211) (432111) (531111) (32211111) (42111111) (3111111111)
Crossrefs
The version for -1 instead of -2 is A000070.
The non-reversed negative version is A000097.
The ordered version appears to be A001700.
The version for 1 instead of -2 is A035363.
The whole set of partitions of 2n is counted by A058696.
The strict case appears to be A065033.
The version for -1 instead of -2 is A306145.
The version for 2 instead of -2 is A344613.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Programs
-
Mathematica
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],sats[#]==-2&]],{n,0,30,2}] - or - Table[Length[Select[IntegerPartitions[n],EvenQ[Max[#]]&&Count[#,_?OddQ]==2&]],{n,0,30,2}]
Extensions
More terms from Bert Dobbelaere, Jun 12 2021
Comments