cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344758 Smallest divisor d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 5, 11, 12, 13, 14, 15, 16, 17, 9, 19, 20, 7, 22, 23, 8, 25, 13, 27, 4, 29, 30, 31, 32, 33, 17, 35, 9, 37, 38, 13, 8, 41, 42, 43, 44, 45, 46, 47, 48, 49, 25, 51, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 62, 63, 64, 65, 22, 67, 17, 69, 70, 71, 72, 73, 37, 25, 76, 77, 13, 79, 80, 81, 41, 83
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Examples

			36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A011772 is applied to them, one obtains values [1, 3, 2, 7, 3, 8, 8, 8, 8], thus there are four divisors that obtain the maximal value 8 obtained at 36 itself, of which divisor 9 is the smallest, and therefore a(36) = 9.
		

Crossrefs

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344758(n) = { my(x=A011772(n)); fordiv(n,d,if(A011772(d)==x, return(d))); };
    (Python 3.8+)
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    def A011772(n):
        plist = [p**q for p, q in factorint(2*n).items()]
        if len(plist) == 1:
            return n-1 if plist[0] % 2 else 2*n-1
        return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))
    def A344758(n):
        m = A011772(n)
        for d in divisors(n):
            if A011772(d) == m:
                return d # Chai Wah Wu, Jun 03 2021

Formula

a(n) = n / A344759(n).