A344758 Smallest divisor d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.
1, 2, 3, 4, 5, 2, 7, 8, 9, 5, 11, 12, 13, 14, 15, 16, 17, 9, 19, 20, 7, 22, 23, 8, 25, 13, 27, 4, 29, 30, 31, 32, 33, 17, 35, 9, 37, 38, 13, 8, 41, 42, 43, 44, 45, 46, 47, 48, 49, 25, 51, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 62, 63, 64, 65, 22, 67, 17, 69, 70, 71, 72, 73, 37, 25, 76, 77, 13, 79, 80, 81, 41, 83
Offset: 1
Keywords
Examples
36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A011772 is applied to them, one obtains values [1, 3, 2, 7, 3, 8, 8, 8, 8], thus there are four divisors that obtain the maximal value 8 obtained at 36 itself, of which divisor 9 is the smallest, and therefore a(36) = 9.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
PARI
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772 A344758(n) = { my(x=A011772(n)); fordiv(n,d,if(A011772(d)==x, return(d))); }; (Python 3.8+) from itertools import combinations from math import prod from sympy import factorint, divisors from sympy.ntheory.modular import crt def A011772(n): plist = [p**q for p, q in factorint(2*n).items()] if len(plist) == 1: return n-1 if plist[0] % 2 else 2*n-1 return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l))) def A344758(n): m = A011772(n) for d in divisors(n): if A011772(d) == m: return d # Chai Wah Wu, Jun 03 2021
Formula
a(n) = n / A344759(n).