cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344881 Numbers such that A011772(k) > A011772(d) for all their proper divisors d.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 59, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 73, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 107, 108, 109, 110
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2021

Keywords

Crossrefs

Union of A000961 and A344883.
Complement of A344882.
Positions of 1's in A344590, in A344759, and in A344880 (characteristic function).

A344882 Numbers k that have such a proper divisor d for which A011772(d) = A011772(k).

Original entry on oeis.org

6, 10, 18, 21, 24, 26, 28, 34, 36, 39, 40, 50, 55, 57, 58, 60, 66, 68, 74, 75, 78, 82, 88, 92, 93, 96, 98, 100, 105, 106, 111, 120, 122, 124, 126, 129, 132, 136, 138, 144, 146, 147, 150, 153, 155, 156, 160, 162, 164, 168, 171, 176, 178, 183, 188, 189, 190, 194, 196, 198, 201, 202, 203, 205, 208, 210, 216, 218, 219, 222
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2021

Keywords

Crossrefs

A344758 Smallest divisor d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 5, 11, 12, 13, 14, 15, 16, 17, 9, 19, 20, 7, 22, 23, 8, 25, 13, 27, 4, 29, 30, 31, 32, 33, 17, 35, 9, 37, 38, 13, 8, 41, 42, 43, 44, 45, 46, 47, 48, 49, 25, 51, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 62, 63, 64, 65, 22, 67, 17, 69, 70, 71, 72, 73, 37, 25, 76, 77, 13, 79, 80, 81, 41, 83
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Examples

			36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A011772 is applied to them, one obtains values [1, 3, 2, 7, 3, 8, 8, 8, 8], thus there are four divisors that obtain the maximal value 8 obtained at 36 itself, of which divisor 9 is the smallest, and therefore a(36) = 9.
		

Crossrefs

Programs

  • PARI
    A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
    A344758(n) = { my(x=A011772(n)); fordiv(n,d,if(A011772(d)==x, return(d))); };
    (Python 3.8+)
    from itertools import combinations
    from math import prod
    from sympy import factorint, divisors
    from sympy.ntheory.modular import crt
    def A011772(n):
        plist = [p**q for p, q in factorint(2*n).items()]
        if len(plist) == 1:
            return n-1 if plist[0] % 2 else 2*n-1
        return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))
    def A344758(n):
        m = A011772(n)
        for d in divisors(n):
            if A011772(d) == m:
                return d # Chai Wah Wu, Jun 03 2021

Formula

a(n) = n / A344759(n).

A354999 a(n) = n divided by the smallest divisor d of n for which A344005(d) = A344005(n), where A344005(n) is the smallest positive integer m such that n divides m*(m+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 5, 7, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 1, 1, 6, 1, 5, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 17 2022

Keywords

Crossrefs

Cf. A344005, A354991, A354992, A354994 (positions of 1's), A354998.
Cf. also A344759, A346089.

Programs

  • Mathematica
    Module[{m = 1}, While[! Divisible[m*(m + 1), n], m++]; m]; a[n_] := Module[{sn = s[n], ds = Divisors[n]}, Do[If[s[d] == sn, Return[n/d]], {d, ds}]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
    A354999(n) = { my(x=A344005(n)); fordiv(n, d, if(A344005(d)==x, return(n/d))); };

Formula

a(n) = n / A354998(n).

A346089 a(n) = n divided by the smallest divisor d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that k! is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 8, 3, 2, 1, 12, 1, 2, 9, 2, 5, 6, 1, 4, 3, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 3, 2, 1, 12, 5, 2, 3, 8, 1, 10, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6, 1, 8, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 05 2021

Keywords

Crossrefs

Cf. A002034, A345935, A345936, A345944 (positions of 1's), A346088.
Cf. also A344759.
Differs from A302776 for the first time at n=27, where a(27) = 1, while A302776(27) = 3.

Programs

  • PARI
    A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034.
    A346089(n) = { my(x=A002034(n)); fordiv(n,d,if(A002034(d)==x, return(n/d))); };

Formula

a(n) = n / A346088(n).
Showing 1-5 of 5 results.